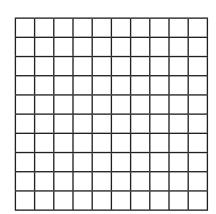
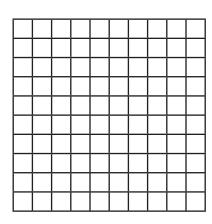
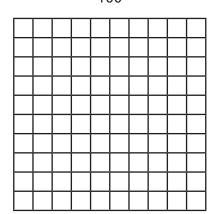
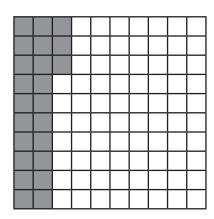

Warming Up:




Learning to Solve:

1.
$$\frac{6}{10}$$
 and $\frac{60}{100}$




2.

4	4	4	.4

3.

		 0		

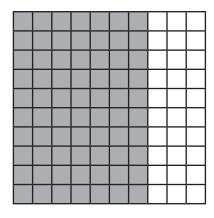
Practicing Together:

Write each fraction as a decimal number.

1.
$$\frac{6}{10}$$

2.
$$\frac{47}{100}$$

3.
$$\frac{9}{10}$$

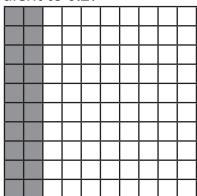

4.
$$\frac{80}{100}$$

Write each decimal as a decimal fraction.

- **9.** Cameron asked, "In 852.03, what does the 3 represent?" What would you say to Cameron?
 - **a.** It represents 3 ones because it is the first digit on the right.
 - **b.** It represents 3 tenths because it is the second digit after the decimal point.
 - **c.** It represents 3 hundredths because it is $\frac{1}{10}$ of the place value to the left.
 - **d.** It represents 3 tens because there are 2 digits after the decimal point.

Trying It on Your Own

1.



Which of the following describes the shaded area of the grid?

- **a.** $\frac{3}{7}$
- **b.** 0.07
- **c.** 0.7
- **d.** 70
- **2.** Which of the following is the decimal fraction for 0.73?
 - **a.** $\frac{73}{10}$
 - **b.** $\frac{73}{100}$
 - **c.** $\frac{73}{1}$
 - **d.** $\frac{100}{73}$

- 3. Dan said, "The 3 in 726.3 represents 30, or 3 tens." Do you agree with Dan?
 - **a.** Agree, because each place value in a number is 10 times larger than the place value before it.
 - **b.** Agree, because it could be written as 726.30.
 - **c.** Disagree, because the 3 represents 3 ones.
 - **d.** Disagree, because the 3 represents 3 tenths.

4. Which of the following is equivalent to 0.2?

- **a.** 0.02
- **b.** 0.20
- **c.** 2.0
- **d.** 20.0

Student Booklet

			_
Decima	c·	Laccan	1
Decillia	13.	FC33011	

Name:	

Wrapping It Up

Each of you has a card with either a fraction or a decimal number. Find the person whose number represents an equivalent amount.

Warming Up:

0.1	20	0.00	3
0.1	100	0.02	100
0.5	110	1 01	10
0.5	100	1.01	100
0.2	40	0.01	50
0.2	100	0.01	100
0.05	101	0.04	30
0.05	100	0.01 0.04 0.03	100
1 1	_4	0.02	_5
1.1	100	0.03	100
0.2	1	0.4	2
0.3	100	0.4	100

Learning to Solve:

Match the decimal with its place on the number line.

0.45 _____

0.73 _____

0.16

0.88

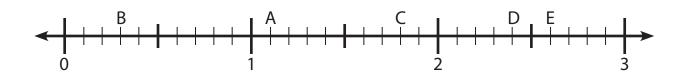
Compare.

0.37 _____ 0.42

0.137 _____ 0.132

0.53 ______ 1

Practicing Together:

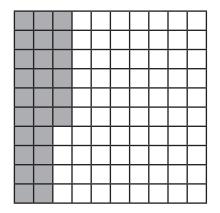

1. Match the decimal with its place on the number line.

1.8 _____

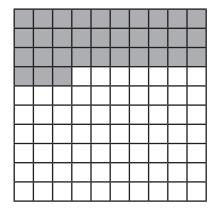
1.1 _____

2.6 _____

2.4 _____



- **2.** Write <, >, or = in the blank.
 - **1.** 0.651 0.295
 - **2.** 0.032 ____ 0.210
 - **3.** $\frac{1}{4}$ _____ 0.251
 - **4.** 3.201 3.002
 - **5.** 2.320 $\frac{23}{10}$


- **6.** Samson said, "0.804 is greater than 0.81." Do you agree with Samson?
 - a. Yes, I agree because 0.804 has more digits than 0.81.
 - **b.** Yes, I agree because the last digit is 4, which is greater than 1.
 - c. No, I disagree because 804 thousandths is less than 810 thousandths.
 - **d.** No, I disagree because 81 is greater than 80.

Trying It on Your Own

1. Which statement is true?

Carl's model of 0.26

Ben's model of 0.33

- a. You can't tell which decimal is greater.
- **b.** Carl's model of 0.26 shows that 0.26 > 0.33, because you can't model 0.33 like Ben did.
- **c.** 0.26 < 0.33
- **d.** 0.26 > 0.33
- 2. Which of the following is a correct statement?

a.
$$\frac{1}{2} > 0.5$$

b.
$$\frac{1}{2} > 0.55$$

c.
$$0.49 > \frac{1}{2}$$

d.
$$0.512 > \frac{1}{2}$$

- **3.** Martha said that 0.421 < 0.42. Do you agree with her?
 - a. No, because 421 is not less than 42.
 - **b.** No, because 421 thousandths is greater than 420 thousandths.
 - **c.** Yes, because if there are more digits in the decimal, it will be smaller.
 - **d.** Yes, because the last digit of 0.421 is 1 and the last digit of 0.42 is 2.

- 4. Which statement describes the relationship between 0.368 and 0.279?
 - **a.** 0.3 > 0.2; therefore, 0.368 > 0.279.
 - **b.** The 8 in 0.368 is less than the 9 in 0.279, so 0.368 < 0.279.
 - **c.** There are 3 digits in each decimal, so 0.368 = 0.279.
 - **d.** 79 is greater than 68, so 0.279 > 0.368.

Learning to Solve:

Put these numbers in order from least to greatest.

Name:

Practicing Together:

Decimal Card Game Answer Sheet Instructions:

Instructions: Take turns flipping over the top 2 cards in your stack. Document the digits. Work together to identify the larger decimal number and circle it. When you finish the stack, shuffle all of the cards and repeat. Document each card that is pulled and circle the greater number.

Turn	Cards pulled
1	,
2	,
3	,
4	,
5	,
6	,
7	,
8	,
9	,
10	,
11	,
12	,
13	,
14	,
15	,

Game 2

Instructions: Take turns flipping over the top 3 cards in your stack. Write the numbers you pull in the first column, and work together to put the cards in ascending order. Write the numbers in ascending order in the last column. When you finish the stack, shuffle all of the cards and repeat.

Document each card

Turn	Cards pulled	Ascending order
1	, ,	, ,
2	, ,	, ,
3	, ,	, ,
4	, ,	, ,
5	, ,	, ,
6	, ,	, ,
7	, ,	, ,
8	, ,	, ,
9	, ,	, ,
10	, ,	, ,

Name:	
	,

Game 3

Instructions: Take turns flipping over the top 4 cards in your stack. Write the numbers you pull in the first column. Work together to put the cards in descending order. Write your answer in the last column.

Turn	Cards pulled			Descending order	
1	,	ı	,	, , ,	
2	,	ı	,	, , ,	
3	,	ı	,	, , ,	
4	,	ı	,	, , ,	
5	,	,	,	, , ,	
6	,	,	,	, , ,	
7	,	,	,	, , ,	
8	,	,	,	, , ,	

Name: _

Trying It on Your Own

- 1. Which of the following shows a correct compare relationship?
 - **a.** 0.25 < 0.155
 - **b.** 0.381 < 0.318
 - **c.** 0.97 = 0.970
 - **d.** 0.624 > 0.626

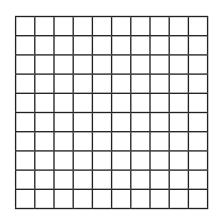
2. Put these rational numbers in order from least to greatest, or ascending order:

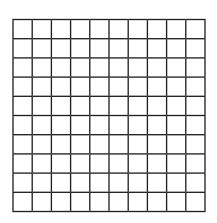
$$\frac{4}{10}$$
, 0.762, 0.5, $\frac{31}{100}$

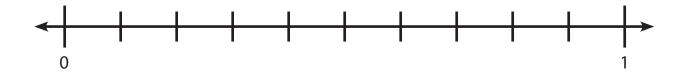
- **a.** $\frac{4}{10}$, 0.762, 0.5, $\frac{31}{100}$
- **b.** $\frac{4}{10}$, 0.5, $\frac{31}{100}$, 0.762
- **c.** 0.5, 0.762, $\frac{4}{10}$, $\frac{31}{100}$
- **d.** $\frac{31}{100}$, $\frac{4}{10}$, 0.5, 0.762

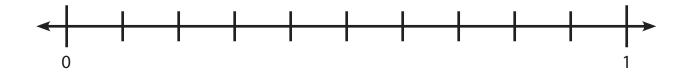
3. Which is the correct descending, or greatest to least, order of this set of decimals?

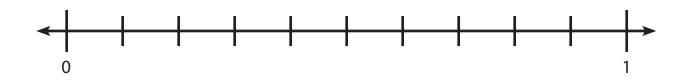

- **a.** 0.4, 0.405, 0.042, 0.450, 0.46
- **b.** 0.46, 0.450, 0.405, 0.4, 0.042
- **c.** 0.4, 0.042, 0.450, 0.46, 0.405
- **d.** 0.042, 0.4, 0.405, 0.450, 0.46

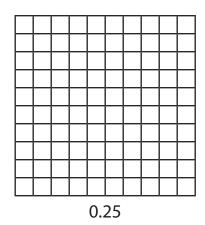

4. Erin said that these numbers were in order from greatest to least:

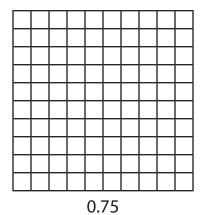

- 0.712, 0.71, $\frac{7}{10}$, $\frac{1}{2}$. Is she correct?
 - **a.** Yes, because she knows that $\frac{1}{2} = 0.5$ and $\frac{7}{10} = 0.7$. She put the decimals in order from greatest to least: 0.712, 0.71, 0.7, 0.5.
 - **b.** Yes, because $\frac{1}{2}$ is like 50 and $\frac{7}{10}$ is like 70 and then you can put them in this order 50, 70, 71, 712.
 - **c.** No, because $\frac{1}{2}$ is the largest number in the list, so it should go first.
 - **d.** No, because $\frac{7}{10}$ is equal to 0.70, which is greater than 0.71.

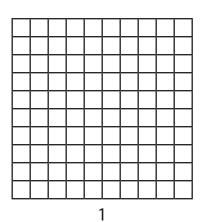

Learning to Solve:


John said that 0.8 is closer to 0.5 than 0.75. Do you agree? Why or why not? Use at least 1 of the models (10 by 10 grid or number line) to support your answer.

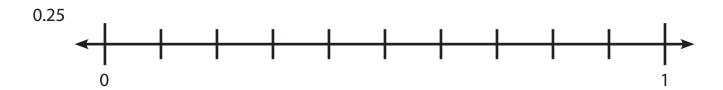


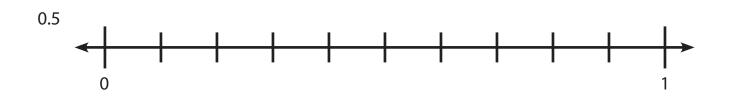


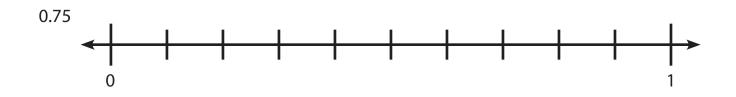


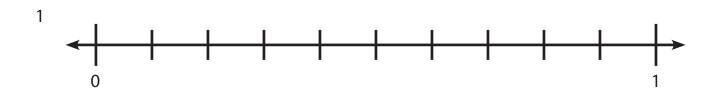


Model each benchmark decimal.




0.5





Model each benchmark decimal.

Name:		

Practicing Together:

Display the Cards of Decimals for Lesson 4 (see page 129 of Teacher Masters). You will have a set of cards that show decimals (page 129 on your student booklet). Work with your partner to make the sort. Be sure you agree on how you decided to sort the decimals. You are going to sort them based on which benchmark decimal each on is closer to. Fit the Decimals into the columns below.

0	0.25	0.5	0.75	1

Trying It on Your Own

- **1.** Dex said, "0.340 is closer to 300 than to the benchmark decimals." Do you agree with Dex?
 - a. Agree, because 300 is close to 340.
 - **b.** Agree, because they both have 3 in the hundreds place and a 0 in the ones place.
 - c. Disagree, because 0.340 is between 0.25 and 0.5.
 - **d.** Disagree, because 0.340 is between 0.5 and 1.

2. Sam ordered these 3 decimals from greatest to least, using benchmark decimals.

0.875

0.0640

0.4

Do you agree with his order?

- **a.** Disagree, because 0.0640 is closer to 0 and 0.4 is closer to 0.5.
- **b.** Agree, because 0.875 is closer to 0.75, 0.0640 is a little more than 0.5, and 0.4 is a little less than 0.5.
- **c.** You cannot order decimals that do not have the same number of digits to the right of the decimal point.
- **d.** It is impossible to decide whether 0.0640 is larger than 0.4 because they are both close to 0.5.

- **3.** Which of the following is a true statement?
 - **a.** 0.87 = 0.63 because they are the same distance from 0.75.
 - **b.** 0.87 > 0.63 because 8 tenths is larger than 6 tenths.
 - **c.** 0.87 < 0.63 because 0.63 is farther to the left on the number line.
 - **d.** 0.87 < 0.63 because 0.63 is 0.13 away from 0.5, but 0.87 is 0.12 away from 0.75.

4. Select the correct order of these decimals from least to greatest:

0.275, 0.036, 0.413, and 0.028

a. 0.275	0.028	0.036	0.413
b. 0.028	0.036	0.413	0.275
c. 0.028	0.036	0.275	0.413
d. 0.413	0.275	0.036	0.028

Student Booklet

	_		
Dosima		1 0000	1
Decima	5:	1 655011	4

Name:		

Wrapping It Up

What decimals that are larger than 1 might we use as benchmark decimals?

Warming Up:

Write each number in expanded form.

Name:		

Learning to Solve:

$$0.79 + 0.03 = 1.09$$

Is this reasonable?

1.47 + 0.91

Estimate:

Method used:

Sum:

Method used:

8.32 + 4.89

Estimate:

Method used:

Sum:

Method used:

Name:
17.03 + 26.98
Estimate:
Method used:
Sum:
Method used:
14.18 + 6.94
Estimate:
Method used:
Sum:
Method used:

Trying It on Your Own

1. Nora solved 4.51 + 2.3 in this way:

What error did she make?

- **a.** Nora did not make a mistake. 4.74 is the correct sum.
- **b.** Nora should have added 0.5 and 0.3 and 4 and 2 to get a sum of 6.81.
- c. Nora should have put a 0 at the end of 2.3 and added to get a sum of 4.740.
- **d.** Nora should have added to get 2.751.

- 2. Which of the following is the sum of 16.08 and 4.217?
 - **a.** 5.825
 - **b.** 20.1017
 - **c.** 20.297
 - **d.** 58.25

3. Which addition problem has the sum of 14.45?

- **a.** 6.4 + 8.5
- **b.** 6.15 + 8.3
- **c.** 8.15 + 6.4
- **d.** 10.05 + 4.04

4. Kory used benchmark fractions to estimate the sum of 5.12 and 6.87. Which of the following would be Kory's estimate?

- **a.** 11
- **b.** 11.5
- **c.** 13
- **d.** 12

Warming Up:

The following computation was done incorrectly.

$$4.05 + 0.632 = 1.037$$

1. How could you use estimation to explain why the answer isn't reasonable?

2. Identify the error.

3. Do the computation correctly.

Learning to Solve:

Solve the following problems:

- **1.** Sandra went to the store to buy 2 pounds of cheddar cheese for a dinner she wanted to make. No package of cheddar cheese was exactly 2 pounds. However, 1 package of cheddar cheese weighed 0.84 pounds and 1 package weighed 0.95 pounds.
 - **A.** Could these 2 packages of cheese be used to make her dinner? Why or why not?

B. Exactly how many pounds of cheddar cheese were in the 2 packages?

2. A magic square is a square array of numbers in which the sum of all rows, columns, and diagonals are the same. In this magic square, the sum is 15.3.

Complete this magic square by filling in the empty spaces with decimal numbers between 1 and 10.

6.12	1.02	
	5.1	
2.04		

- **3.** Michael and John were in Paris, France. All of the measurements in Europe are in the metric system. They walked from their hotel to the Eiffel Tower. The distance is 1.265 kilometers. After they left the Eiffel Tower, they walked to a restaurant for lunch. While eating lunch, they figured out that they had walked 3.135 kilometers so far.
 - **A.** Estimate how many kilometers it is from the Eiffel Tower to the restaurant.

B. Find exactly how far it is from the Eiffel Tower to the restaurant.

Practicing Together:

Complete the two magic squares.

All rows, columns, and diagonals sum to 9.

		3.6
1.8	3.0	

All rows, columns, and diagonals sum to 12.6.

		4.8
3.6	6.6	

Trying It on Your Own

- **1.** Marshall ran 6.5 laps during the relay race. Then, Carl ran 4 laps. Tom finished the race by running 3.2 laps. What is the total number of laps in the relay race?
 - **a.** 13.7 laps
 - **b.** 10.1 laps
 - **c.** 9.11 laps
 - **d.** 9.15 laps

- **2.** Frank rented a boat for 2 days. At the end of the 2 days, he had used 25.34 gallons of gas. Which expression shows a possible answer for how much gas Frank used each day?
 - **a.** 13.3 + 12.4
 - **b.** 13.2 + 12.14
 - **c.** 12.57 + 12.57
 - **d.** 10.3 + 15.4

- **3.** Samantha planted a 4.75-foot pine tree in her yard. After a year, the tree had grown 2.5 feet. Samantha said that her tree is now 6.125 feet tall. Is she correct?
 - **a.** Yes, because 4 + 2 = 6, and 0.7 + 0.5 = 0.12. Then, you add the 5 to the end of the number and your answer is 6.125.
 - **b.** No, because 4.75 + 2.5 = 5.
 - **c.** No, the answer is 7.25 feet.
 - **d.** No, the answer is 7.5 feet.

- **4.** Mr. Smith drove 8 hours on the first day of the vacation, 6.82 hours on the second day, and 9.05 hours on the third day. How many hours has he been driving?
 - **a.** 15.95 hours
 - **b.** 17.12 hours
 - **c.** 23.87 hours
 - **d.** 24.32 hours

Name: _____

Wrapping It Up

Write a problem that fits the following clues:

Clue 1: The difference is close to 5.

Clue 2: Both numbers in the problem are decimals.

Clue 3: Both numbers have 2 decimal places to the right of the decimal point.

What could be the 2 numbers I subtracted?

Learning to Solve:

With your partner, estimate the difference of each problem in this table. Write the estimates in the table. Do not compute the exact answer; instead, just estimate. Be sure you are able to explain how you arrived at your estimate.

Problem	Estimate
35.2 – 4.85	
62.89 – 39.9	
56.123 – 4.907 – 12.01	
459.75 – 12.23	
6 – 3.255 – 0.8	

Decimals: Lesson 7

Name:		

Practicing Together:

Estimate the answer to each problem. Write your estimate and explain in words how you found it.

1. The driving distance between 2 cities is 2,443.79 miles. Your family has already driven 1,804.50 miles. About how many more miles do you need to drive to arrive at the destination?

2. Your grandparents and your family live 358.5 miles apart. Your family has driven 113.4 miles to visit your grandparents. About how many more miles do you need to drive to arrive at your grandparents' home?

3. Find 2 numbers that have at least 1 digit to the right of the decimal point and have an estimated difference of 15.0.

Trying It on Your Own

- **1.** Juan flew a paper airplane 226.83 feet. His friend flew a paper airplane 19.5 feet less than that. About how far did his friend fly a paper airplane?
 - **a.** 345 feet
 - **b.** 205 feet
 - **c.** 175 feet
 - **d.** 150 feet

- 2. Which 2 decimal numbers have a difference of about 8?
 - **a.** 15.2 6.8
 - **b.** 28.75 15.32
 - **c.** 19.83 8.79
 - **d.** 37.45 8.03

- 3. Estimate the difference: 38.02 11.9.
 - **a.** 20
 - **b.** 30
 - **c.** 19
 - **d.** 12

- **4.** Estimate the difference: 29.875 15.1.
 - **a.** 15
 - **b.** 20
 - **c.** 21
 - **d.** 30

Decimals: Lesson 7

Wrapping It Up

Write a decimal number that can be found between 3.07 and 3.007.

Warming Up:

Look at the numbers written in expanded form. Write their decimal numbers.

$$40 + 5 + 0.7 + 0.02 =$$

$$10 + 4 + 0.0 + 0.03 =$$

$$300 + 50 + 7 + 0.1 + 0.003 =$$

$$1,000 + 600 + 90 + 8 + 0.1 + 0.02 + 0.007 =$$

Learning to Solve:

Estimate: _____

Difference:

Practicing Together:

Estimate first and then subtract.

Estimate: _____

Difference:

Estimate:

Difference: _____

Trying It on Your Own

- 1. What is the best estimate of the difference of 38.725 6.01?
 - **a.** 44
 - **b.** 33
 - **c.** 38
 - **d.** 27

- **2.** Find the difference: 38.725 6.01.
 - **a.** 44.735
 - **b.** 38.124
 - **c.** 32.715
 - **d.** 30.724

- **3.** What is the best estimate of the difference of 8.76 2.46?
 - **a.** 600
 - **b.** 10
 - **c.** 6
 - **d.** 4

- **4.** Find the difference: 9.337 1.162
 - **a.** 8.435
 - **b.** 8.235
 - **c.** 8.175
 - **d.** 8.075

Name:		

Wrapping It Up

Jared said, "It is possible to subtract 2 decimal numbers that have 2 digits to the right of the decimal point and get a difference that has only 1 digit to the right of the decimal point."

Do you agree with Jared? If so, give an example of a problem that proves Jared right. If you do not agree with Jared, explain why.

Decimals: Lesson 9

Name:	
Name:	

Warming Up:

Directions:

We are going to play Match It Up! You have 8 cards. Each card has a decimal number on it. You will work with your partner to match the cards with the decimal number on your sheet so that it forms a correct subtraction problem. Each card will be used once and only once.

Decima	s:	lesson 9

Nam	e:
Lea	arning to Solve:
	ra weighs 103.74 pounds. Her twin sister, Nora, weighs 98.28 pounds. How much more es Cora weigh?
Esti	mate:
Hov	w much more does Cora weigh?

Describe how you solved.

Decimals: Lesson 9

Name:
Practicing Together:
1. Margo has 12.75 yards of cloth. The quilt she wants to make takes 19.5 yards of cloth. How many more yards of cloth does Margo need?
Estimate:
Difference:
2. Cal kept track of how many miles he rode his bike. The first week, he rode 26.38 miles The second week, he rode 8.25 miles less. How far did he ride his bike the second week?
Estimate:
Difference:
3. Sammi saved \$126.83. She bought a bike helmet for \$36.74 for herself and a chew toy for \$12.79 for her dog, Maggie. Does she have enough money left over to buy a rug for her bedroom that costs \$88.97? Support your answer.
Estimate of money she has left:
Answer:

Trying It on Your Own

- 1. Terry subtracted 23.56 10.4 and found a difference of 22.52. Is his answer reasonable?
 - **a.** Yes, it is reasonable because he subtracted correctly.
 - **b.** Yes, it is reasonable because when you estimate, 23.56 is close to 24 and 10.4 is close to 1 and 24 1 = 23.
 - **c.** No, it is not reasonable because the answer should be close to 14.
 - **d.** No, it is not reasonable because the answer should be closer to 20.

- **2.** In 2 weeks, Adam walked 25.75 miles, which is 5.8 miles farther than Bob walked. How far did Bob walk?
 - a. 25.17 miles
 - **b.** 20.15 miles
 - **c.** 19.95 miles
 - **d.** 18.72 miles

3. Which of the following would complete the equation correctly:

$$-15.006 = 31.18$$
?

- **a.** 46.186
- **b.** 36.186
- **c.** 26.186
- **d.** 16.186

- **4.** Monty and Jeb were both sick. Monty had a temperature of 102.1°. Jeb's temperature was 1.38° less. What was Jeb's temperature?
 - **a.** 35.9°
 - **b.** 100.72°
 - **c.** 101.28°
 - **d.** 103.48°

Wrapping It Up

$$45.82 - 3.61 =$$

$$2.48 + 3.12 =$$

$$10.45 - 8.35 =$$

Name:			

Warming Up:

Directions:

We are going to play Make Mine 1. Each pair has a deck of cards that has the kings, queens, jacks, and jokers removed. The number on the card represents the value. For example, a 7 represents 7. An ace represents 1 and a 10 represents 0. One person in your pair will be the dealer. (Teacher may want to designate dealer.)

The dealer will deal 4 cards to each of you. You will use the numbers represented by those cards to make 2 addends that when added together will result in a sum close to 1. You will record those addends on the Make Mine 1 Score Sheet and find the sum. For your score, you will record how far you are from 1. For example, if you have a sum of 0.92, you will record 0.08. If your sum is 1.16, you will record 0.16. When you have played those cards, they are put on the bottom of the deck and you will get 4 new cards. We will play 5 rounds. At the end of 5 rounds, add your scores for each round to get your total score. The player with the lower score is the winner.

Decimals: Lesson 10

Name:

Learning to Solve:

Estimate of product: _____

Estimate of product: _____

Estimate of product: _____

Estimate of product: _____

Name: _____

0.24 → Estimate: _____ × 12 → Estimate: _____

Estimate of product: _____

Name: _____

Trying It on Your Own

- **1.** Hayley multiplied 16×5.3 . Her product was 848. Which of the following is the best reasoning about Hayley's product?
 - **a.** Correct, because 16 is close to 20 and 5.3 is close to 50. $20 \times 50 = 1,000$.
 - **b.** Correct, because 16 is close to 10 and 5.3 is close to 60. $10 \times 60 = 600$.
 - **c.** Incorrect, because 16 is close to 20 and 5.3 is close to $5.5 \times 20 = 100$.
 - **d.** Incorrect, because 16 is close to 20 and 5.3 is close to 1. $20 \times 1 = 20$.

- **2.** Which is the best estimate of 0.02×1.79 ?
 - **a.** 0, because 0.02 is close to 0 and 1.79 is close to 2. $0 \times 2 = 0$.
 - **b.** 2, because 0.02 is close to 1 and 1.79 is close to 2. $1 \times 2 = 2$.
 - **c.** 4, because 0.02 is close to 2 and 1.79 is close to 2. $2 \times 2 = 4$.
 - **d.** 1, because 0.02 is close to 1 and 1.79 is close to 1. 1 \times 1 = 1.

- **3.** Which is the best estimate of 3.89×18.98 ?
 - **a.** 3, because 3.89 is close to 3 and 18.98 is close to 1. $3 \times 1 = 3$.
 - **b.** 60, because 3.89 is close to 3 and 18.98 is close to 20. $3 \times 20 = 60$.
 - **c.** 40, because 3.89 is close to 4 and 18.98 is close to $10.4 \times 10 = 40$.
 - **d.** 80, because 3.89 is close to 4 and 18.98 is close to $20.4 \times 20 = 80$.

- **4.** Cam multiplied 4.8×5.7 . His product was 27.36. Which of the following is the best reasoning about Cam's product?
 - **a.** Correct, because 4.8 is close to 5 and 5.7 is close to 6. $5 \times 6 = 30$.
 - **b.** Correct, because 4.8 is close to 4 and 5.7 is close to 5. $4 \times 5 = 20$.
 - **c.** Incorrect, because 4.8 is close to 4 and 5.7 is close to 10. $4 \times 10 = 40$.
 - **d.** Incorrect, because 4.8 is close to 5 and 5.7 is close to 10. $5 \times 10 = 50$.

Wrapping It Up

$$11 \times 2.1 =$$

$$1.93 \times 4 =$$

$$9 \times 0.09 =$$

Warming Up:

Directions:

We are going to play the Estimation Sorting Game. You have a set of Estimation Sorting Cards and an Estimation Sorting Sheet. There are 3 columns on the sheet. Each card has a computation problem. Your task is to decide in your pair if the sum, difference, or product is closer to 10, 25, or 50. You cannot use a calculator or paper and pencil to find the answer. You need to use any of the strategies you have developed to estimate the answer and decide where to place the card. You have 4 minutes to make your decisions for the 10 cards, so try to make your estimate and place your card on the sheet in about 30 seconds or less.

Learning to Solve:

Estimate: _____

Product: _____

Estimate: _____

Product:

Estimate:

Product: _____

Practicing Together:

Multiply: 47×38

Estimate: _____

Product: _____

Multiply: 47×3.8

Estimate:

Product:

Multiply: 4.7×38

Estimate:

Product: _____

Multiply: 47×0.38

Estimate: _____

Product:

Name:		

Multiply: 0.47×38

Estimate:

Product:

Multiply: 47×0.038

Estimate: _____

Product: _____

What is the best estimate of the product of 4.7×0.038 ?

- a. 47 because 0.038 is really close to 0
- **b.** 0 because 47 is close to 50 and 0.038 is close to 0
- c. 50 because 47 is close to 50 and 0.038 is close to 1
- **d.** 2,000 because 47 is close to 50 and 0.038 is close to 40

Name: _____

Trying It on Your Own

- **1.** Which of the following is the best range of estimates for the product of 14.3×1.3 ?
 - **a.** 1 to 4
 - **b.** 14 to 20
 - **c.** 100 to 140
 - **d.** 140 to 200

- **2.** Tran found the product of 25×0.4 . Which of the following is the correct product and explanation?
 - **a.** 100, because $25 \times 4 = 100$.
 - **b.** 100.0, because $25 \times 4 = 100$ and there should be 1 digit to the right of the decimal point.
 - **c.** 10.0, because $25 \times 4 = 100$ and there should be 1 digit to the right of the decimal point.
 - **d.** 1.0 because 0.4 is close to 1 and there should be 1 digit to the right of the decimal point.

Name:

- **3.** Which is the best estimate of the product of 20.14×0.4 ?
 - **a.** 40, because 20.14 is close to 20 and 0.4 is close to 2. 2 times 20 is 40.
 - **b.** 10, because 20.14 is close to 20 and 0.4 is close to one-half. One-half of 20 is 10.
 - **c.** 5, because 20.14 is close to 20 and 0.4 is close to one-fourth. One-fourth of 20 is 5.
 - d. 1, because 20.14 is close to 2 and 0.4 is close to one-half. One-half of 2 is 1.

- **4.** If the product of 275×17 is 4,675, what is the product of 2.75×0.17 ?
 - **a.** 467.5
 - **b.** 46.75
 - **c.** 4.675
 - **d.** 0.4675

Name:			
INALLIE.			

Wrapping It Up

On your index card, write your estimate of the product of 19.875×92.478 .

Warming Up:

Directions:

We are going to play Multiplication Mania. Each pair has a deck of cards that has the kings, queens, jacks, and jokers removed. The number on the card represents the value. For example, a 7 represents 7. An ace represents 1 and a 10 represents 0. I will draw one card at a time from the deck. You will place that number in one of the blanks to create decimals numbers that when multiplied will get a product close to the number in the middle of your game sheet. You may place it anywhere on your sheet but once you place your number, you may not change it. When all of the blanks are filled, you will use your calculator to find the exact product for each of the close numbers. For your score, you will record how far you are from each of them and record it in the score column. You will add each of those scores to get your Total Score. The person with the lowest score wins.

Student Booklet

Name:				
Learning to Solve:				
Jess babysits her baby brother for \$8.50 per hour. How much will she make if she babysits 5 hours?				
Estimate:				
Answer:				

Decimals: Lesson 12

Answer: _____

tudent Booklet	Decimals: Lesson 12
Name:	
Practicing Together:	
1. 3 days a week, Jonah buys ice cream for \$3.59 at the ice cre Jonah spend on ice cream each week?	am shop. How much does
Estimate:	
Answer:	
2. The width of a math book is 3.84 centimeters. There are 27 What is the total width of all the math books?	math books on the shelf.
Estimate:	
Answer:	
3. Marshall bought a new bike. The bike cost \$127.50. He paid dollar. How much tax did Marshall pay?	l \$0.08 sales tax on each
Estimate:	

Name: _____

Trying It on Your Own

- **1.** Marianne is making 4 dog leashes for her dog-walking business. Each leash needs 4.85 feet of rope. What is the total length of rope that she should buy?
 - **a.** 16.4 feet
 - **b.** 19.4 feet
 - **c.** 164 feet
 - **d.** 194 feet

- **2.** Brad bought 16 markers. Each marker cost \$0.94. About how much money did Brad spend?
 - **a.** \$9.00
 - **b.** \$16.00
 - **c.** \$90.00
 - **d.** \$160.00

Name: _____

- **3.** What is the product of 8.3×0.7 ?
 - **a.** 0.581
 - **b.** 5.81
 - **c.** 58.1
 - **d.** 581

- **4.** Sydney used her calculator to find the product of 0.215×0.358 . What should her calculator show as the product?
 - **a.** 0.07697
 - **b.** 0.7697
 - **c.** 7.697
 - **d.** 76.97

Student Booklet Decimals: Lesson 1

Name: _	

Wrapping It Up

On your notecard, write a word problem using 2 decimal numbers. The solution process must use multiplication. Solve the problem on the back of the card.

Warming Up:

$$6 \quad \div \quad 3 \quad = \quad 2$$

If you think the quotient is greater than the dividend, circle "greater." If you think the quotient is less than the dividend, circle "less." Be sure you can explain why you selected your answer.

Practicing Together:

Directions:

In your pair, solve each problem on the Decimals Cards. You will place each Decimal Card in one of two different groups on the Less than the Dividend/More than the Dividend Sheet, based on the quotient. Do not use pencils or calculators; use the generalization and ideas we found in the lesson. Be prepared to explain how you decided.

Trying It on Your Own

- **1.** Divide: 61.56 ÷ 3.8
 - **a.** 162
 - **b.** 16.2
 - **c.** 1.62
 - **d.** 0.162

- **2.** Divide: 6.156 ÷ 3.8
 - **a.** 162
 - **b.** 16.2
 - **c.** 1.62
 - **d.** 0.162

Name:

- **3.** Lynn divided $26.82 \div 0.9$. Her quotient was 298. Is her quotient reasonable?
 - **a.** Yes, the quotient should be larger than the dividend because 0.9 is less than 1.
 - **b.** Yes, because 26.82 is close to 26 and 0.9 is close to 10. And $26 \div 10 = 260$.
 - **c.** No, because 26.82 is close to 30 and 0.9 is close to 1. And $30 \div 1 = 30$.
 - **d.** No, because 26.82 is close to 300 and 0.9 is close to 10. And $300 \div 10 = 30$.

- **4.** Divide: 37.08 ÷ 0.06
 - **a.** 618
 - **b.** 61.8
 - **c.** 6.18
 - **d.** 0.618

nt Booklet	Decimals: Lesson 13
------------	---------------------

Wrapping It Up

On your index card, write a division problem that has a quotient greater than the dividend. Solve the problem on the back of the card.

Name: _____

Warming Up:

Find a Place Decimal Game Directions

- **1.** You will play in pairs. The person on the left is Player A. The person on the right is Player B.
- **2.** The goal of the game is to create a decimal number, using the digits 0 through 9, that is as close as possible to the target decimal number in the center of the page: 0, 1, 5, 10.
- **3.** To create the decimal numbers, the teacher will draw a card from this deck and show it to you. The deck contains the 2 through 9 cards. The 10 card represents 0 and the ace represents 1. There are 4 of each number in the deck.
- **4.** The first card I draw will be for Player A. Player A may put the number on the card in any place value position that is blank on his/her side of the game sheet. Once the card is drawn, it will not be drawn again.
- **5.** Player B will get the next card. That player will place the number in any place value position that is blank on his/her side of the game sheet.
- **6.** The teacher will keep drawing cards until all of the blanks are filled.
- **7.** Once you place a number in a box, you may not change the number or move it.
- **8.** You must play the number on your turn. In other words, you cannot save the number and play it later.

Scoring Directions

- **1.** To score, you and your partner will subtract the target number and the number you created and place the score in the box next to the target number on your side of the game sheet. The difference will always be positive, so you should subtract the smaller number from the larger number.
- 2. After you find all the differences, add them. That will give you your total score.
- **3.** The person with the least number of points wins.

Student Booklet

Name:			
Learning to Solve:			
The trip to Washington was 252 miles. It took exactly 3.5 hours to drive. What was the average miles per hour?			
Estimate:			
Answer:			

Decimals: Lesson 14

Student Booklet

Name:
Practicing Together:
1. My friend said that if you multiply his height by 6, your product is 34.5 feet. How tall is my friend in feet?
Estimate:
Answer:
2. Cordell is making shelves that are 75.5 centimeters long each. He has a board that is 377.5 centimeters long. How many shelves can he make from that board?
Estimate:
Answer:
3. The ice cream store uses 27.25 quarts of milk a day. The store received a shipment of 163.5 quarts of milk. How many days will the milk last?
Estimate:
Answer:

Decimals: Lesson 14

Name: _____

Trying It on Your Own

- **1.** The diameter of the Kapok tree, which is the largest tree in the Amazon, is approximately 10.56 feet. What is the radius of this tree? (Remember that a radius is half of the diameter.)
 - **a.** 21.12 feet
 - **b.** 12.56 feet
 - **c.** 10 feet
 - **d.** 5.28 feet

- **2.** The Jones family spends \$1,075.44 per year on cable service. About how much does the Jones family spend per month on cable service?
 - a. About \$100 per month
 - **b.** About \$90 per month
 - c. About \$80 per month
 - d. About \$70 per month

- **3.** Joe went to the discount store, where everything sells for \$2.99 each. If he spent \$80.73, how many items did he buy?
 - **a.** 40 items
 - **b.** 35 items
 - **c.** 27 items
 - **d.** 22 items

- **4.** Sheri's mom bought ribbon to make the cheerleaders' bows. She paid \$0.67 per foot for the ribbon. She spent \$10.72. How many feet of ribbon did she buy?
 - **a.** 160 feet
 - **b.** 16 feet
 - **c.** 1.6 feet
 - **d.** 0.16 feet

Name: _____

Wrapping It Up

Write "T" for true if you think the answer is correct or "F" for false, if you think the answer is incorrect. The digits in the answer are correct, but the placement of the decimals may be incorrect. If the answer is incorrect, explain why.

1.
$$40 \div 3.2 = 1.25$$

2.
$$16 \times 0.44 = 7.04$$

3.
$$0.8 \div 10 = 0.08$$

4.
$$0.53 \times 5 = 0.265$$

Name:			

Warming Up:

Find a Place Decimal Game Directions

- **1.** You will play in pairs. The person on the left is Player A. The person on the right is Player B.
- **2.** The goal of the game is to create a decimal number, using the digits 0 through 9, that is as close as possible to the target decimal number in the center of the page: 0, 1, 5, 10.
- **3.** To create the decimal numbers, the teacher will draw a card from this deck and show it to you. The deck contains the 2 through 9 cards. The 10 card represents 0 and the ace represents 1. There are 4 of each number in the deck.
- **4.** The first card I draw will be for Player A. Player A may put the number on the card in any place value position that is blank on his/her side of the game sheet. Once the card is drawn, it will not be drawn again.
- **5.** Player B will get the next card. That player will place the number in any place value position that is blank on his/her side of the game sheet.
- 6. The teacher will keep drawing cards until all of the blanks are filled.
- **7.** Once you place a number in a box, you may not change the number or move it.
- **8.** You must play the number on your turn. In other words, you cannot save the number and play it later.

Scoring Directions

- **1.** To score, you and your partner will subtract the target number and the number you created and place the score in the box next to the target number on your side of the game sheet. The difference will always be positive, so you should subtract the smaller number from the larger number.
- 2. After you find all the differences, add them. That will give you your total score.
- **3.** The person with the least number of points wins.

Student Booklet

Name:
Learning to Solve:
1. Selena bought 27.5 pounds of mulch and 38.6 pounds of soil for her garden. These items normally sold for \$1.75 per pound, but she got them on sale for \$1.50 per pound. How much did she spend on her garden supplies?
Estimate:
Answer:
2. Del had a phone plan for his international long-distance calls. The first 12 minutes cost \$2.20. After 12 minutes, each minute costs \$0.35. Del talked on a call for 33 minutes. How much did that phone call cost?
Estimate:
Answer:

Decimals: Lesson 15

Practicing Together:

Identify the rule that was used to create each pattern. Then name the next 3 decimals. Be able to explain how you decided on the rule.

C. 12.72, 22.71, 31.59, 39.36, ______, _____, _______, ________

Trying It on Your Own

1. What is the next number in the pattern?

54.4 55.5 56.6 57.7 58.8 59.9

- **a.** 60.0
- **b.** 60.1
- **c.** 61.0
- **d.** 61.1

2. What is the next number in the pattern?

56.8 28.4 14.2 7.1

- **a.** 3.5
- **b.** 3.55
- **c.** 3.75
- **d.** 3.9

- **3.** What is the product of 0.04×0.006 ?
 - **a.** 0.00024
 - **b.** 0.0024
 - **c.** 0.024
 - **d.** 0.24

- **4.** Armon bought 23.6 pounds of potatoes. Each pound cost \$1.45. About how much did Armon spend on potatoes?
 - **a.** \$14
 - **b.** \$23
 - **c.** \$35
 - **d.** \$50

Student Booklet Decimals: Lesson 15

Appendices

DECIMALS

Student Booklet				

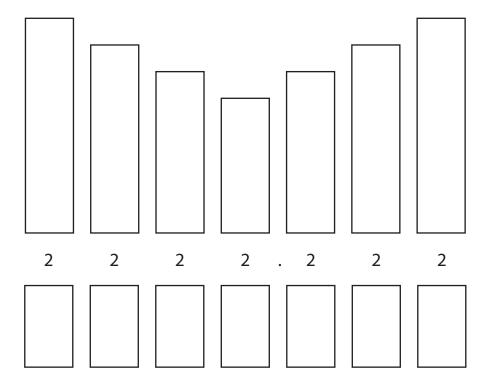
Warming Up:

For each whole number, fill in the blanks.

1. 32 is _____ tens and ____ ones.

2. 16 is _____ ten and ____ ones.

3. 458 is _____ hundreds, ____ tens, and ____ ones.


Learning to Solve:

4 4 4 . 4

Practicing Together:

- 1. Using the diagram below of the number 2,222.222:
 - **A.** Write the place value in words in the box above each digit.
 - **B.** Write the numeric value of the digit in the box below each digit.

- 2. What is the place value of the 5 in 3.805?
- **3.** Write a decimal number that has a 6 in the hundredths place.
- **4.** What is the place value of the 0 in 20.1? _____
- **5.** How many thousandths are in 1,467.983?
- **6.** What is the value of the digit 9 in 14.693? _____
- 7. What is the value of the digit 7 in 8.072?
- **8.** Write a decimal number that has a 2 in the tens place and a 2 in the tenths place.

Trying It on Your Own

- 1. Which of the following is a decimal number with a 5 in the hundredths place?
 - **a.** 58.257
 - **b.** 56.3
 - **c.** 3.125
 - **d.** 504.385

- 2. Marsha said the digit 2 is in the tenths place in the number 36.129. Is she correct?
 - **a.** Yes, because the 2 is 2 places to the right of the decimal point, which is the tenths place.
 - **b.** Yes, because there is a 2 in the tens place.
 - **c.** No, because 9 is in the tenths place.
 - **d.** No, because 1 is in the tenths place.

- **3.** Which of the following decimal numbers has a digit with a value of $\frac{8}{1,000}$?
 - **a.** 8,103.45
 - **b.** 4.082
 - **c.** 0.008
 - **d.** 15.7698

- **4.** What is the place value of the digit 1 in the decimal number 3.014?
 - a. Tenths
 - **b.** Hundredths
 - **c.** Thousandths
 - **d.** Ones

Wrapping It Up

Fill in the blanks with the correct answers.

1. 16.38 is 1 ten, _____ ones, ____ tenths, and 8 hundredths.

2. 4.599 is _____ ones, ____ tenths, 9 hundredths, and ____ thousandths.

3. 0.157 is ______ ones, 1 _______, 5 ______, and ______ thousandths.

4. 28.60 is 2 ______, ____ ones, 6 ______, and 0

Warming Up:

Put the list of fractions in order from greatest to least:

$$\frac{1}{4}$$

Defend your answer in one of the following ways.

- **A.** Draw models of the fractions.
- **B.** Use benchmark fractions.
- **C.** Explain exactly how you decided the order.

Student Booklet

Decimals: Appendix 3A

lame:					
Learning to Solve: How would you decide which is the greater decimal number?					
-					
Arrange the dec	imal numbers from g	greatest to lea	ast.		
	3.82	11.1	3.8065	5	3.011
Closest whole n	umber:				

Student Booklet

Decimals: Appendix 3A

Practicing Together:

1. Given the decimal number 0.87:

A. Is 0.87 closer to 0 or 1?

B. Is 0.87 closer to 0.8 or 0.9?

2. Given the decimal number 0.813:

A. Is 0.813 closer to 0 or 1?

B. Is 0.813 closer to 0.8 or 0.9?

C. Is 0.813 closer to 0.81 or 0.82?

3. Using < or >, write the relationship between 0.87 and 0.813.

4. Put the decimal numbers in order from greatest to least: 20.9, 20.03, 20.89, 19.999.

- **5.** Which statement gives the correct reasoning about the relationship among 0.25, 0.243, and 0.2?
 - **a.** 0.25 is greater than 0.243 and 0.2 because written in fraction form, $\frac{250}{1,000}$ is greater than $\frac{243}{1,000}$ or $\frac{200}{1,000}$.
 - **b.** 0.243 is greater than 0.25 and 0.2 because it has more digits to the right of the decimal point.
 - **c.** 0.2 is greater than 0.25 and 0.243 because it represents $\frac{2}{10}$.
 - **d.** They are all equal because they have 2 tenths as the first digit to the right of the decimal point.

Student Booklet Decimals: Appendix 3A

Name: _____

Trying It on Your Own

- 1. Mike read the number 2.35 as "2 and 35 hundredths." Did he read it correctly?
 - a. No, he should read it as "2 point 35 hundredths."
 - **b.** No, he should read it as "2 and 3 five-tenths."
 - c. No, he should read it as "2 point 3 five-tenths."
 - **d.** Yes, he is correct.

- **2.** Which statement gives the correct reasoning about the relationship among 0.5, 0.47, and 0.495?
 - **a.** 0.5 is greater than 0.47 because 5 is greater than 4, but 0.5 is less than 0.495 because 0.495 has 3 digits after the decimal point and 0.5 has only 1 digit after the decimal point.
 - **b.** 0.5 is not greater than 0.47 because 0.5 has only 1 digit after the decimal point and 0.47 has 2 digits after the decimal point.
 - **c.** 0.5 is greater than 0.47 because 0.5 is the same as one-half and 0.47 is not quite one-half. 0.5 is greater than 0.495 because 0.495 is also not quite one-half.
 - **d.** 0.5 is less than both 0.47 and 0.495 because 0.5 has only 1 digit after the decimal point.

- 3. Put the decimals 2.124, 2.03, 2.9, and 2.44 in order from least to greatest.
 - **a.** 2.03 2.124 2.44 2.9
 - **b.** 2.9 2.03 2.44 2.124
 - **c.** 2.03 2.44 2.124 2.9
 - **d.** 2.124 2.03 2.44 2.9

- **4.** True or false: 17.11 < 17.2?
 - a. True, because you always put the greater number after the lesser number.
 - **b.** True, because 17.11 and 17.2 both have 17 as the whole number, but the next digit in the tenths place is greater in 17.2 than in 17.11.
 - c. False, because 17.11 has a greater number of digits than 17.2.
 - **d.** False, because $\frac{11}{100}$ is greater than $\frac{2}{10}$.

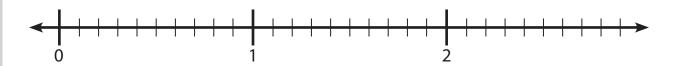
Student Booklet Decimals: Appendix 3A


N	ame:
	Wrapping It Up
	Write 3 sentences to explain how you would decide whether 15.34 is greater than or less than 15.304.
	1
	2
	3

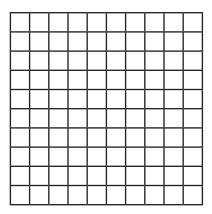
Warming Up:

On each number line, show where you started by writing an "S," use arrows to indicate what moves you made, and show where you ended by writing an "E."

Then, write the equation that symbolizes your actions below the number line.

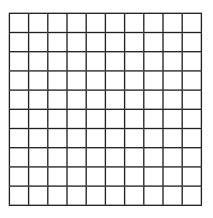

Example: Where do you stop when you start at 0.2 and go 5 tenths to the right?

1. Where do you stop when you start at 0.6 and go 7 tenths to the right?


2. Where do you stop when you start at 1.8 and go 3 tenths to the left?

3. Write a question like #1 or #2 that will result in an answer of 0.9. On the number line, model the problem and write the equation.

Learning to Solve:

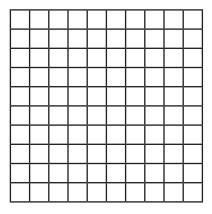


Equation that symbolically represents this model:

Practicing Together:

Addition

- **1.** Estimate the sum of 0.24 and 0.29. _____
- **2.** Represent 0.24 + 0.29 on the grid. Use a different-colored marker, crayon, or pencil for each decimal number.



- **3.** 0.24 + 0.29 = _____
- **4.** Often, we see the previous problem written as:

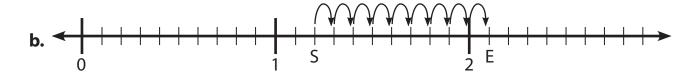
Why is there a 1 above the tenths column?

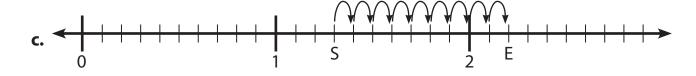
Subtraction

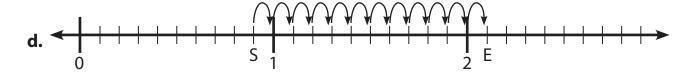
- 1. Estimate the difference of 0.8 and 0.12:
- **2.** Represent 0.8 0.12 on the grid. Use a different-colored marker, crayon, or pencil for each decimal number.

- **3.** 0.8 0.12 = _____
- **4.** Write the previous equation vertically and show how you would solve the problem without a model.

Decimals: Appendix 9A


- **5.** Seaton subtracted 8.1 3.02. Her difference was 4.9. Do you agree with her answer?
 - **a.** Yes, I agree because you have to regroup with the 1 tenth to subtract 2 tenths.
 - **b.** Yes, I agree because that is close to the estimate of 5.
 - **c.** No, I disagree because the difference is 5.12.
 - **d.** No, I disagree because she did not subtract the correct place value positions. The difference is 5.08.


Trying It on Your Own


- 1. When Bryn added 3.16 and 4, she got a sum of 3.56. Is Bryn correct?
 - **a.** This answer is correct because 4 + 1 = 5
 - **b.** This answer is correct because the 1 is in the ones place and the 4 is also in the ones place, so we add those 2 digits together.
 - **c.** This answer is incorrect because the 4 should be placed under the 6 and the answer will be 3.2.
 - **d.** This answer is incorrect because the 4 is in the ones place and the 3 is in the ones place so you add 4 and 3. The answer will be 7.16.

2. Which number line represents the equation 1.2 + 0.9 = 2.1?

- **3.** 3.456 0.203 =
 - **a.** 3.253
 - **b.** 3.226
 - **c.** 1.426
 - **d.** 1.156

- **4.** Which answer provides the most reasonable estimate for 4.876 + 0.3 + 10.11?
 - **a.** 15
 - **b.** 17
 - **c.** 18
 - **d.** 13

Student Booklet Decimals: Appendix 9A

Name:		
Wrapping It Up		

Find 2 decimal numbers whose sum OR difference is 4.18.

Warming Up:

Estimate a whole-number product for each expression.

1.8×19

Estimate:

2. 2.6 × 3

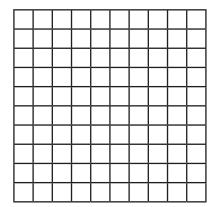
Estimate: _____

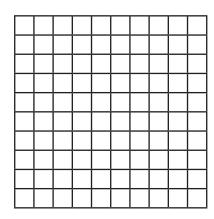
3. 5.7 × 4.2

Estimate:

4. 12.011 × 3.09

Estimate:

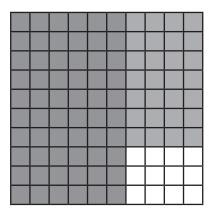

Decimals: Appendix 12A


Name: _____

Learning to Solve:

Each of Cynthia's 4 rose bushes needs a space 0.45 feet wide to be shipped without harming it. How wide does the packing box need to be to fit all 4 bushes?

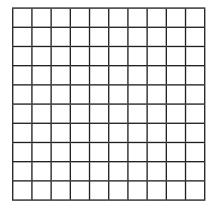
- A. Estimate the solution.
- **B.** Represent this situation, using grid(s).
- **C.** Write an equation to represent the situation.
- **D.** Show how to solve the equation without using a model.
- 1. Estimate:
- **2.** Grid representation:



- **3.** Equation that represents this model: _____
- **4.** Solve the problem without a model:

 0.6×0.7

- 1. Estimate:
- **2.** Grid representation:



- **3.** Equation that represents this model:
- **4.** Solve the problem without a model:

Practicing Together:

Kristopher ran 0.6 miles a day for 9 days. What is the total number of miles he ran?

- 1. Estimate the solution:
- 2. Represent this situation on the grid.

- 3. Write an equation to represent the situation:
- **4.** Show how to solve the equation without using a model.

Circle the correct estimate choice. Then find the product of each problem.

- 0.51 Estimate: Greater than 0.5 or less than 0.5 \times 0.5
- 2.034 Estimate: Greater than 1.0 or less than 1.0

Trying It on Your Own

- **1.** Maria calculated 1.4×0.5 and said the answer is 7.0. Is she correct?
 - **a.** Yes, because 0.5 is the same as $\frac{1}{2}$ and $\frac{1}{2}$ of 14 is 7.
 - **b.** Yes, because 0.5 is the same as $\frac{1}{2}$ and $\frac{1}{2}$ of 1.4 is 7.0.
 - **c.** No, because 0.5 is the same as $\frac{1}{2}$ and $\frac{1}{2}$ of 1.4 is 0.7.
 - **d.** No, because $1.4 \times 0.5 = 0.6$.

2. Which expression will result in a product of 0.046?

a.
$$0.23 \times 0.2$$

b.
$$2.3 \times 0.2$$

c.
$$0.23 \times 2.0$$

d.
$$2.3 \times 2.0$$

- **3.** 0.9×0.3
 - **a.** The product is greater than 1.
 - **b.** The product is less than 0.1.
 - **c.** The product is greater than 0.5.
 - **d.** The product is less than 0.5.

- **4.** I planted a bush that grew 2.3 feet each year. How tall was the tree after 4 years?
 - **a.** 9.2 feet
 - **b.** 8.2 feet
 - **c.** 92 feet
 - **d.** 8.12 feet

Decimals: Appendix 12A

Name: _____

Wrapping It Up

1. The product of 0.1 and 0.3 is 3 tenths.

True False

2. The product of 1.8 and 4.0 is 7 and 2 tenths.

True False

3. The product of 2.33 and 0.2 is 466 thousandths.

True False

Decimals: Appendix 14A

Name:

Warming Up:

Find a Place Decimal Game Directions

- **1.** You will play in pairs. The person on the left is Player A. The person on the right is Player B.
- **2.** The goal of the game is to create a decimal number, using the digits 0 through 9, that is as close as possible to the target decimal number in the center of the page: 0, 1, 5, 10.
- **3.** To create the decimal numbers, the teacher will draw a card from this deck and show it to you. The deck contains the 2 through 9 cards. The 10 card represents 0 and the ace represents 1. There are 4 of each number in the deck.
- **4.** The first card I draw will be for Player A. Player A may put the number on the card in any place value position that is blank on his/her side of the game sheet. Once the card is drawn, it will not be drawn again.
- **5.** Player B will get the next card. That player will place the number in any place value position that is blank on his/her side of the game sheet.
- **6.** The teacher will keep drawing cards until all of the blanks are filled.
- **7.** Once you place a number in a box, you may not change the number or move it.
- **8.** You must play the number on your turn. In other words, you cannot save the number and play it later.

Scoring Directions

- **1.** To score, you and your partner will subtract the target number and the number you created and place the score in the box next to the target number on your side of the game sheet. The difference will always be positive, so you should subtract the smaller number from the larger number.
- 2. After you find all the differences, add them. That will give you your total score.
- **3.** The person with the least number of points wins.

Student Booklet

Name: _ **Learning to Solve:** 2. A length of the fence is 149.6 feet. 1. Charles drove 342 miles in 5.7 hours. What was the average miles per hour? Every 6.8 feet, a post needs to be placed in concrete to keep the fence upright. In **Estimate:** how many places will concrete need to be poured? Answer: Estimate: Answer: **3.** An unsliced loaf of bread is 1.26 feet **4.** The cross-country running team runs long. If it is cut into pieces that are 0.14 feet an average of 8.5 miles each day. How in length, how many pieces will there be? many days did it take them to run 119 miles? **Estimate: Estimate:** Answer: Answer:

Decimals: Appendix 14A

Trying It on Your Own

- **1.** The expression $14 \div 0.7$ results in a quotient that is smaller than 14.
 - a. True: Division always results in a smaller number.
 - **b.** True: The answer is 7.
 - c. True: The answer is 2.
 - **d.** False: The quotient is greater than 14.

- **2.** Which of the following is the closest whole-number estimate for $8.75 \div 0.8$?
 - **a.** 10
 - **b.** 5
 - **c.** 4
 - **d.** 1

- **3.** Which of the following expressions results in a quotient of 1.2?
 - **a.** $0.72 \div 0.6$
 - **b.** $7.2 \div 0.6$
 - **c.** $0.72 \div 6$
 - **d.** 7.2 ÷ 0.06

- **4.** Pauline said that $1.64 \div 4.1$ is 4. Is she correct?
 - **a.** Yes, because 4.1×4 is 1.64.
 - **b.** No, the answer is 0.4.
 - **c.** Yes, because when you divide a smaller number by a bigger number, the quotient is smaller.
 - **d.** No, there should be 2 decimal places in the answer because there are 2 decimal places in the dividend.

Student Booklet	Decimals:	Appendix 14A
-----------------	-----------	--------------

Name:		

Wrapping It Up

On an index card, write a story problem involving division with a quotient that is greater than the dividend and the divisor. Show the solution to the problem.

Student Booklet	

Masters for Game and Activity Cards

DECIMALS

Student Booklet		

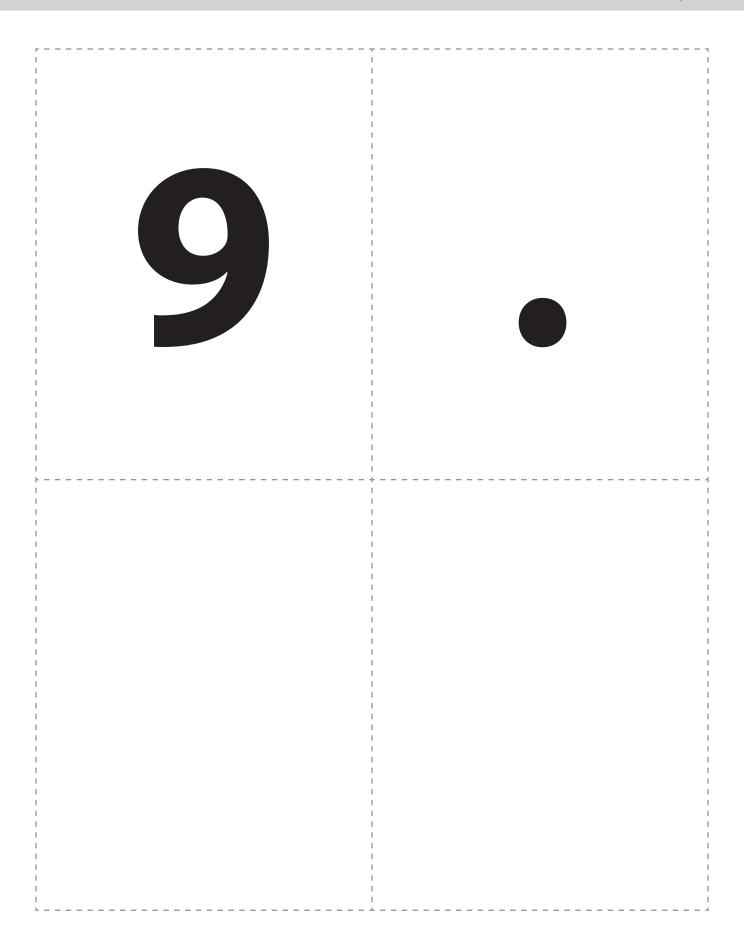
Decimal and Fraction Cards for Lesson 1

_20	0.02	3				
100	0.03	100				
110	0 1	_10_				
100	0.1	100				
40	ο Γ	_50_				
100	0.5	100				
101	^ 2	30				
100	0.3	100				
4	0.05	5				
100	0.05	100				
1	0.02	2				
100	0.02	100				
	100 110 100 40 100 101 100 4 100 1	$ \begin{array}{c c} \hline 100 & 0.03 \\ \hline 110 & 0.1 \\ \hline 100 & 0.1 \\ \hline 40 & 0.5 \\ \hline 100 & 0.5 \\ \hline 100 & 0.3 \\ \hline 4 & 0.05 \\ \hline 100 & 0.05 \\ \hline 1 & 0.02 \\ \hline $				

Decimal and Fraction Cards for Lesson 3

0.8	0.12	0.236	0.4	0.36	0.509
0.7	<u>2</u> 5	0.284	1/2	0.16	0.181
0.1	0.02	0.008	0.6	<u>1</u> 3	0.210
0.3	0.090	0.77	0.9	<u>1</u> 4	0.501
0.24	0.309	0.17	0.611	0.18	0.08

10 by 10 Grid for Lesson 4


Cards of Decimals for Lesson 4

0.3	0.45	0.09
0.68	0.37	0.29
0.001	1.03	0.91

Decimal Cards for Lesson 8

3

6

Match It Up! Game Cards for Lesson 9

26.2	23.25	21.6	26.13
28.17	38.42	12.55	35.49

Match It Up! Game Sheet for Lesson 9

Match your cards to make a correct subtraction problem.

_	47.8	-	73.91		54.3
_		_		_	

Make Mine 1 Score Sheets for Lesson 10

Player 1 Make Mine 1 Score Sheet

Addition Equation

0.___ + 0.__ = ____

0.___ + 0.___ = ____

0.___ + 0.___ = ____

0.___ = ___

0.___ + 0.___ = ____

0.___ + 0.___ = ____

Score

Total Score: _____

Player 2 Make Mine 1 Score Sheet

Addition Equation

0.___ + 0.__ = ____

0.___ + 0.___ = ____

0.___ = ___

0.___ + 0.___ = ____

0.___ = ___

0.___ + 0.__ = ___

Score

Total Score: _____

Blank Esti	Blank Estimating Sorting Cards for Lesson 11			
,				
 	-	; 		
 		; ; ;		
	·	+		
	: -	 		

Estimating Sorting Cards for Lesson 11

	The string cards for Less	
87.62 – 62.38	31.6 × 0.31	74.9 – 26.001
14.3 × 3.5	21.96 × 2.3	47.73 – 32.9
3.25 + 8.12	16.887 + 35.001	14.85 + 7.15
96.76 × 0.28		
	+ + + - + -	

Estimating Sorting Sheet for Lesson 11

About 10	About 25	About 50
	<u> </u>	

Multiplication Mania Game Sheet for Lesson 12

Multiplication Mania Game Sheet

	Close to	Score
×=	10	
×=	25	
×=	50	

Total Score: _____

.....

Multiplication Mania Game Sheet

	Close to	Score
×=	10	
×=	25	
×=	_ 50	

Total Score: _____

Decimal Cards for Lesson 13

 $3.02 \div 2.3$

 $5.76 \div 0.33$

16.1 ÷ 16.10

 $7.88 \div 9.3$

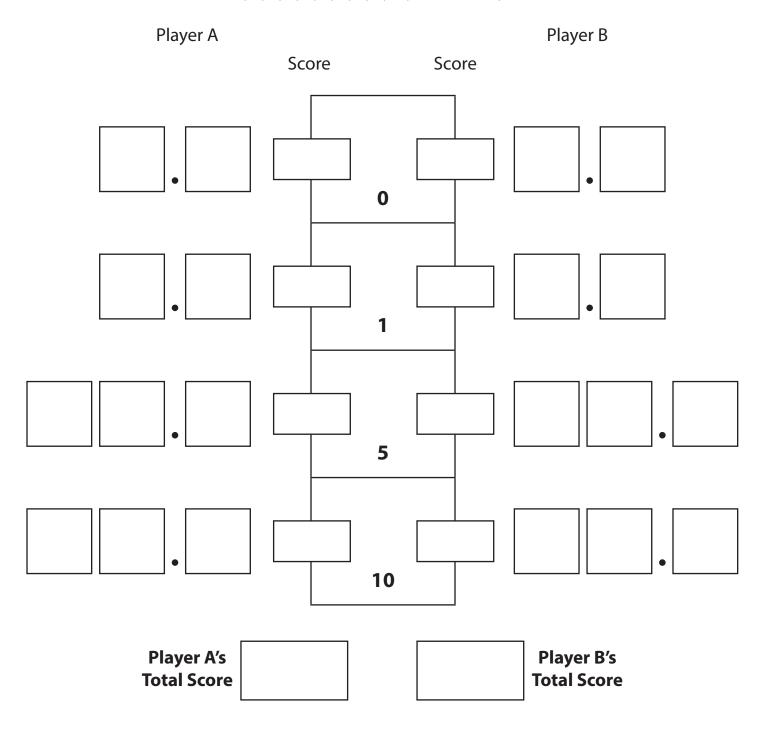
18 ÷ 3.2

 $5.255 \div 0.33$

109.8 ÷ 0.475

4.001 ÷ 0.9998

324.32 ÷ 24.78789


Less Than the Dividend/More Than the Dividend Sheet for Lesson 13

Less Than the Dividend	More Than the Dividend				

Find A Place for Lessons 14, 14A, 15

(2 Players)

Use 40 cards numbered 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 (four or each)

Dougherty, B. J. (2005). *Find a place decimals*. Honolulu, HI: Curriculum Research & Development Group, University of Hawai'i.

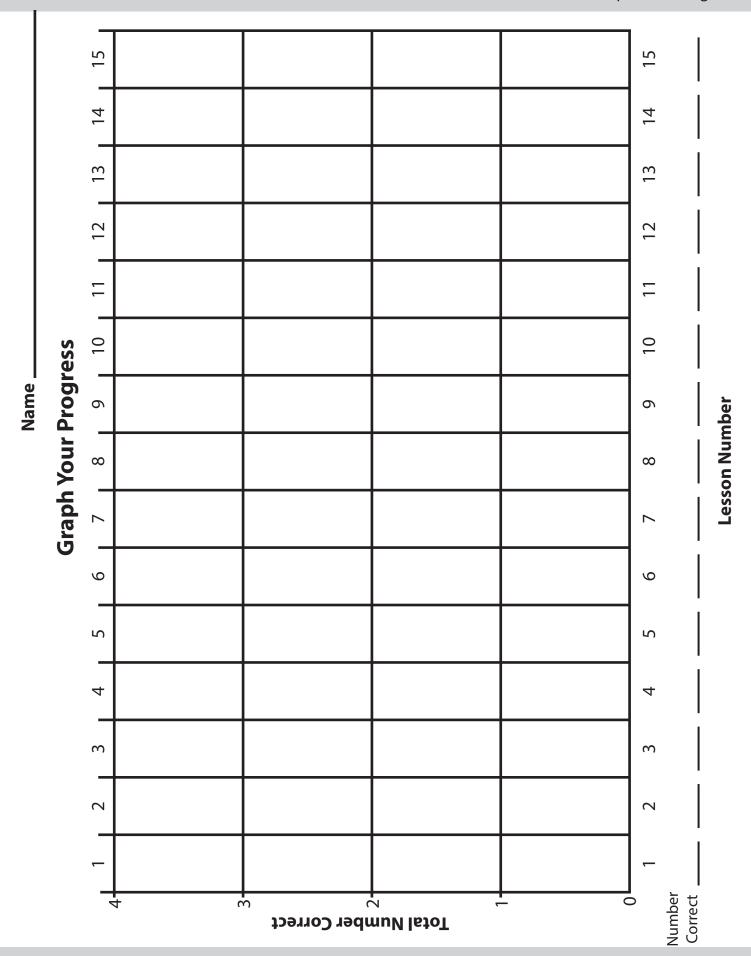
Notes

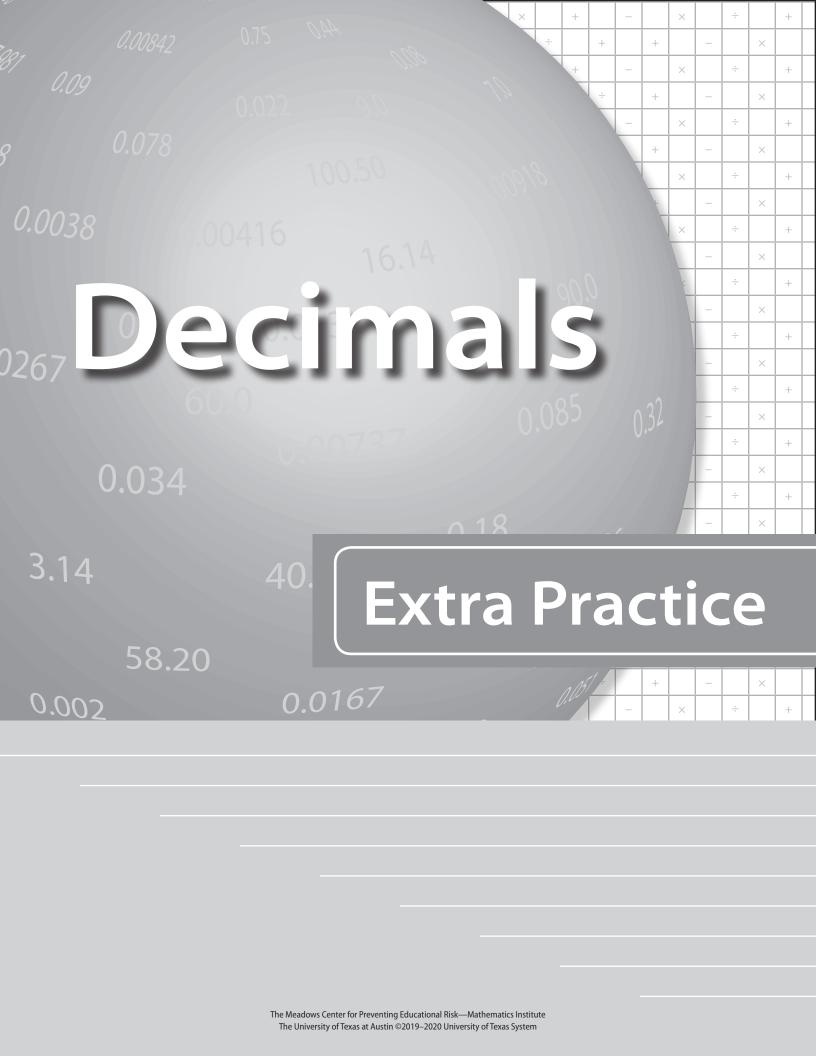
DECIMALS

ame:			

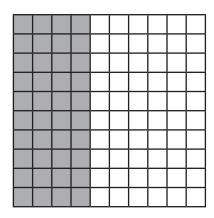
Notes

lame:			

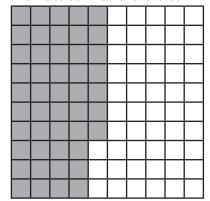

Student Booklet

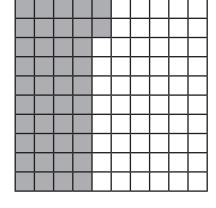

Decimals: Notes

ame:			


Nam	Name:								
Example									
Picture									
Generalizations									

1.


Which of the following describes the shaded area of the grid?


- **a.** $\frac{4}{6}$
- **b.** 0.06
- **c.** 0.6
- **d.** 0.4
- **2.** Which of the following is the decimal fraction for 0.49?
 - **a.** $\frac{49}{10}$
 - **b.** $\frac{49}{100}$
 - **c.** $\frac{49}{1}$
 - **d.** $\frac{100}{49}$

- 3. Julie said, "The 2 in 478.2 represents 20, or 2 tens." Do you agree with Julie?
 - **a.** Agree, because each place value in a number is 10 times larger than the place value of the digit to its right.
 - **b.** Agree, because it could be written as 478.20.
 - **c.** Disagree, because the 2 represents 2 tenths.
 - **d.** Disagree, because the 2 represents 2 ones.

- **4.** Which of the following is equivalent to 0.4?
 - **a.** 0.04
 - **b.** 0.40
 - **c.** 4.0
 - **d.** 40.0

1. Which statement is true?

Daniel's model of 0.47

Chris's model of 0.42

a. You can't tell which decimal is greater.

b.
$$0.47 = 0.42$$

2. Which of the following is a correct statement?

a.
$$\frac{1}{4} > 0.25$$

b.
$$0.252 > \frac{1}{4}$$

c.
$$\frac{1}{4} > 0.255$$

d.
$$0.24 > \frac{1}{4}$$

- **3.** David said that 0.521 < 0.52. Do you agree with him?
 - **a.** No, because 521 is not less than 52.
 - **b.** Yes, because if there are more digits in the decimal, it will be smaller.
 - **c.** No, because 521 thousandths is greater than 520 thousandths.
 - **d.** Yes, the last digit of 0.521 is 1 and the last digit of 0.52 is 2.

- 4. Which statement describes the relationship between 0.427 and 0.368?
 - **a.** The 7 in 0.427 is less than the 8 in 0.368, so 0.427 < 0.368.
 - **b.** 0.4 > 0.3; therefore, 0.427 > 0.368.
 - **c.** There are 3 digits in each decimal, so 0.427 = 0.368.
 - **d.** 68 is greater than 27, so 0.427 < 0.368.

- 1. Which of the following shows a correct relationship?
 - **a.** 0.31 < 0.278
 - **b.** 0.582 < 0.528
 - **c.** 0.475 < 0.423
 - **d.** 0.73 = 0.730

2. Which is the correct descending, or greatest to least, order of this set of decimals?

$$\frac{1}{3}$$
, 0.335, 0.3, 0.033, $\frac{1}{4}$, 0.4

- **a.** $\frac{1}{4}$, 0.4, $\frac{1}{3}$, 0.335, 0.3, 0.033
- **b.** 0.4, 0.335, $\frac{1}{3}$, 0.3, $\frac{1}{4}$, 0.033
- **c.** $\frac{1}{4}$, $\frac{1}{3}$, 0.335, 0.3, 0.033, 0.4
- **d.** $\frac{1}{4}$, 0.3, $\frac{1}{3}$, 0.4, 0.033, 0.335

3. Put these rational numbers in order from least to greatest, or ascending order:

- a. 0.003, 0.045, 0.0045, 4.0405, 4.045, 0.0313
- **b.** 0.003, 0.045, 0.0045, 0.0313, 4.045, 4.0405
- **c.** 0.003, 0.0045, 0.0313, 0.045, 4.0405, 4.045
- **d.** 4.045, 4.0405, 0.045, 0.0313, 0.0045, 0.003

4. Tiffany said that these rational numbers are in order from least to greatest, or ascending order:

$$0.0025, 0.025, 0.05, \frac{1}{4}, 0.4859, \frac{1}{2}, 0.505, 1.004, 2.5$$

Is she correct?

- **a.** Yes, because $\frac{1}{4}$ is like 40 and $\frac{1}{2}$ is like 50, and then you can put them in this order: 5, 25, 40, 250, 2500, 4859, 50, 505, 1004.
- **b.** Yes, because she knows that $\frac{1}{4} = 0.25$ and $\frac{1}{2} = 0.5$. She put the decimals in order from least to greatest: 0.0025, 0.025, 0.05, 0.25, 0.4859, 0.5, 0.505, 1.004, 2.5.
- **c.** No, because $\frac{1}{2}$ is the largest number in the list, so it should go first.
- **d.** No, because $\frac{1}{4}$ is equal to 0.4, which is greater than 0.4859.

- **1.** Martin said, "0.203 is closer to 200 than the benchmark decimals." Do you agree with Martin?
 - a. Agree, because 203 is close to 200.
 - **b.** Agree, because they both have 2 in the hundreds place and a 0 in the tenths place.
 - **c.** Disagree, because 0.203 is less than 1 but more than 0.25.
 - **d.** Disagree, because 0.203 is less than 1, but close to 0.25.

2. Janna ordered these 3 decimals from least to greatest, using benchmark decimals.

0.68

0.316

0.1178

Do you agree with his order?

- **a.** Disagree, because 0.1178 is closer to 0 and 0.68 is closer to 0.5.
- **b.** Agree, because 0.68 is closer to 0.5, 0.316 is closer to 0.75, and 0.1178 is closer to 1
- **c.** You cannot order decimals that do not have the same number of digits to the right of the decimal point.
- **d.** Agree, because 0.316 is larger than 0.68.

- **3.** Which of the following is a true statement?
 - **a.** 0.37 = 0.63 because they are the same distance from 0.5.
 - **b.** 0.37 < 0.63 because 6 tenths is larger than 3 tenths.
 - **c.** 0.37 > 0.63 because 0.63 is farther to the right on the number line.
 - **d.** 0.37 > 0.63 because 0.63 is only 0.13 away from 0.5 but 0.37 is 0.14 away from 0.5.

4. Select the correct order of these decimals from greatest to least:

	0.8997	0.8225	0.614	0.216
a. 0.8225	0.614	0.216	0.8997	
b. 0.8997	0.8225	0.614	0.216	
c. 0.216	0.614	0.8225	0.8997	
d. 0.216	0.614	0.8997	0.8225	

- 1. Kim added 3.05 + 4.8. Her sum is 3.53. Do you agree? Why or why not?
 - a. Agree because she lined up the decimal numbers with the digits on the right.
 - **b.** Agree because 4.8 is close to 0.5 which makes the answer reasonable.
 - **c.** Disagree because you cannot add decimals that have a different number of digits to the right of the decimal point.
 - **d.** Disagree because 3.05 is close to 3 and 4.8 is close to 5. The sum should be close to 8.

2. Which of the following has a sum of 14.72?

- **3.** Which of the following has a sum close to 25?
 - **a.** 12.0007 + 12.00009
 - **b.** 10.08 + 0.15
 - **c.** 19.01 + 0.6
 - **d.** 3.75 + 2.2226

- **4.** What is the sum of 4.006 + 0.0088?
 - **a.** 4.0814
 - **b.** 4.094
 - **c.** 4.0148
 - **d.** 4.886

- **1.** Sara ran 4.2 laps during the relay race. Then, Lucas ran 5 laps. Robert finished the race by running 2.7 laps. What is the total number of laps in the relay race?
 - **a.** 7.4 laps
 - **b.** 11.9 laps
 - **c.** 6.95 laps
 - **d.** 6.59 laps

- **2.** Zoe rented a boat. At the end of 2 days, he had used 45.27 gallons of gas. Which expression shows a possible answer for how much gas Zoe used each day?
 - **a.** 12.02 + 33.7
 - **b.** 30.2 + 15.7
 - **c.** 12.25 + 33.02
 - **d.** 22.13 + 23.15

- **3.** Samantha planted a 2.73-foot pine tree in her yard. After a year, the tree had grown 1.2 feet. Samantha said that her tree is now 3.83 feet tall. Is Samantha correct?
 - a. No, the tree should be 3.93 feet tall.
 - **b.** Yes, because 2.73 + 1.2, 2 + 1 = 3 and then 0.73 + 0.2 = 0.75. The tree should be 3.75 feet tall.
 - **c.** Yes, because 2.73 + 1.2 = 3.83. The tree should be 3.83 feet tall.
 - **d.** No, the tree should be 3.732 feet tall.

- **4.** Mr. Johns drove 7 miles on the first day of the vacation, 3.54 miles on the second day, and 8.2 miles on the third day. How many miles has he been driving?
 - **a.** 4.43 miles
 - **b.** 18.254 miles
 - **c.** 18.74 miles
 - **d.** 11.81 miles

- **1.** Samantha flew a paper airplane 362.38 feet. Her friend flew a paper airplane 23.5 feet less than that. About how far did her friend fly a paper airplane?
 - **a.** 360 feet
 - **b.** 338 feet
 - **c.** 127 feet
 - **d.** 385 feet

- 2. Which 2 decimal numbers have a difference of about 5?
 - **a.** 12.2 2.7
 - **b.** 30.2 15.7
 - **c.** 72.25 67.02
 - **d.** 22.13 16.13

- **3.** Estimate the difference: 28.05 13.8
 - **a.** 15
 - **b.** 27
 - **c.** 29
 - **d.** 13

- **4.** Estimate the difference: 48.605 23.3
 - **a.** 25
 - **b.** 23
 - **c.** 48
 - **d.** 47

- 1. Jack subtracted 4.8 3.52. His difference was 4.62. Do you agree? Why or why not?
 - a. Agree because he lined up the decimal numbers with the digits on the right.
 - **b.** Agree because 4.8 is close to 5 which makes the answer reasonable.
 - **c.** Disagree because you cannot subtract decimals that have a different number of digits to the right of the decimal point.
 - **d.** Disagree because 3.52 is close to 4 and 4.8 is close to 5. The difference should be close to 1.

2. Which of the following has a difference of 10.32?

- 3. Which of the following has a difference close to 8?
 - **a.** 87.58 6.73
 - **b.** 33.17 25.569
 - **c.** 19.01 1.88
 - **d.** 74.305 6.201

- **4.** What is the difference of 72.8 35.001
 - **a.** 37.7
 - **b.** 40.79
 - **c.** 37.007
 - **d.** 37.799

- **1.** David subtracted 74.45 30.2 and found a difference of 71.43. Is his answer reasonable?
 - **a.** Yes, it is reasonable because he subtracted correctly.
 - **b.** Yes, it is reasonable because when you estimate, 74.45 is close to 74 and 30.2 is close to 3. And 74 3 = 71.
 - **c.** No, it is not reasonable because the answer should be closed to 70.
 - d. No, it is not reasonable because the answer should be closed to 44.

- **2.** In 2 weeks, Ana walked 15.23 miles, which is 4.2 miles farther than Lisa walked. How far did Lisa walk?
 - **a.** 11.03 miles
 - **b.** 14.81 miles
 - **c.** 19.43 miles
 - **d.** 15.65 miles

3. Which of the following would complete the equation correctly:

$$-24.3 = 13.27$$

- **a.** 10.76
- **b.** 37.3
- **c.** 37.57
- **d.** 10.84

- **4.** Adam and Bob were both sick. Adam had a temperature of 101.5°. Bob's temperature was 1.5° less. What was Bob's temperature?
 - **a.** 101.3°
 - **b.** 103°
 - **c.** 98.55°
 - **d.** 100°

- **1.** Maggie multiplied 13×4.6 . Her product was 598. Which of the following is the best reasoning about Maggie's product?
 - **a.** Correct, because 13 is close to 10 and 4.6 is close to 50. $10 \times 50 = 500$.
 - **b.** Correct, because 13 is close to 10 and 4.6 is close to 45. $10 \times 45 = 450$.
 - **c.** Incorrect, because 13 is close to 10 and 4.6 is close to 5. $10 \times 5 = 50$.
 - **d.** Incorrect, because 13 is close to 10 and 4.6 is close to 1. $10 \times 1 = 10$.

- **2.** Which is the best estimate of 0.03×1.25 ?
 - **a.** 0, because 0.03 is close to 0 and 1.25 is close to 10. $0 \times 10 = 0$.
 - **b.** 0, because 0.03 is close to 1 and 1.25 is close to 1. $1 \times 1 = 1$.
 - **c.** 0, because 0.03 is close to 0 and 1.25 is close to 1. $0 \times 1 = 0$.
 - **d.** 0, because 0.03 is close to 1 and 1.25 is close to 10. $1 \times 10 = 10$.

- **3.** Which is the best estimate of 1.16×16.93 ?
 - **a.** 2, because 1.16 is close to 2 and 16.53 is close to 1. $2 \times 1 = 2$.
 - **b.** 34, because 1.16 is close to 2 and 16.53 is close to 17. $2 \times 17 = 34$.
 - **c.** 17, because 1.16 is close to 1 and 16.93 is close to 17. $1 \times 17 = 17$.
 - **d.** 10, because 1.16 is close to 1 and 16.53 is close to 10. $1 \times 10 = 10$.

- **4.** Julie multiplied 2.8×5.9 . Her product was 16.52. Which of the following is the best reasoning about Julie's product?
 - **a.** Correct, because 2.8 is close to 3 and 5.9 is close to 6. $3 \times 6 = 18$.
 - **b.** Correct, because 2.8 is close to 1 and 5.9 is close to 5. $1 \times 5 = 5$.
 - **c.** Incorrect, because 2.8 is close to 10 and 5.9 is close to 6. $10 \times 6 = 60$.
 - **d.** Incorrect, because 2.8 is close to 1 and 5.9 is close to 10. $1 \times 10 = 10$.

- **1.** Which of the following is the best range of estimates of the product of 16.2×2.6 ?
 - a. Between 1 and 6
 - b. Between 16 and 20
 - c. Between 32 and 51
 - **d.** Between 150 and 200

- **2.** Daniel found the product of 16×0.7 . Which of the following is his product and explanation?
 - **a.** 112, because $16 \times 7 = 112$.
 - **b.** 112.0, because $16 \times 7 = 112$ and there should be 1 digit to the right of the decimal point.
 - **c.** 11.2, because $16 \times 7 = 112$ and there should be 1 digit to the right of the decimal point.
 - **d.** 1.6 because 0.7 is close to 1 and there should be 1 digit to the right of the decimal point.

- **3.** Which is the best estimate of 18.16×0.6 ?
 - a. 10, because 18.16 is close to 20 and 0.6 is close to one-half. One-half of 20 is 10.
 - **b.** 20, because 18.16 is close to 20 and 0.6 is close to 1. $20 \times 1 = 20$.
 - c. 3, because 18.16 is close to 18 and 0.6 is close to one-sixth. One-sixth of 18 is 3.
 - d. 1, because 18.16 is close to 2 and 0.6 is close to one-half. One-half of 2 is 1.

- **4.** If the product of $317 \times 16 = 5,072$, what is the product of 3.17×1.6 ?
 - **a.** 507.2
 - **b.** 0.5072
 - **c.** 50.72
 - **d.** 5.072

- **1.** Dorothy is making 5 dog leashes for her dog-walking business. Each leash needs 3.27 feet of rope. What is the total length of rope that she should buy?
 - **a.** 15.35 feet
 - **b.** 163.5 feet
 - **c.** 16.35 feet
 - **d.** 153.5 feet

- **2.** William bought 21 markers. Each marker cost \$0.27. About how much money did William spend?
 - **a.** \$567
 - **b.** \$56.70
 - **c.** \$5.67
 - **d.** \$0.567

- **3.** What is the product of 4.7×0.9 ?
 - **a.** 4.23
 - **b.** 42.3
 - **c.** 423
 - **d.** 0.423

- **4.** Jacob used his calculator to find the product of 0.137 \times 0.426. What should his calculator show as the product?
 - **a.** 58.362
 - **b.** 5.8362
 - **c.** 0.58362
 - **d.** 0.058362

- **1.** Which of the following has the greatest quotient?
 - **a.** 360 ÷ 104
 - **b.** 360 ÷ 1.04
 - **c.** 0.36 ÷ 0.0104
 - **d.** 36.0 ÷ 0.0104

- 2. Which of the following has a quotient close to 200?
 - **a.** 401.332 ÷ 20.309
 - **b.** 40.1332 ÷ 0.0203
 - **c.** 40.1332 ÷ 0.203
 - **d.** 4.1332 ÷ 0.203

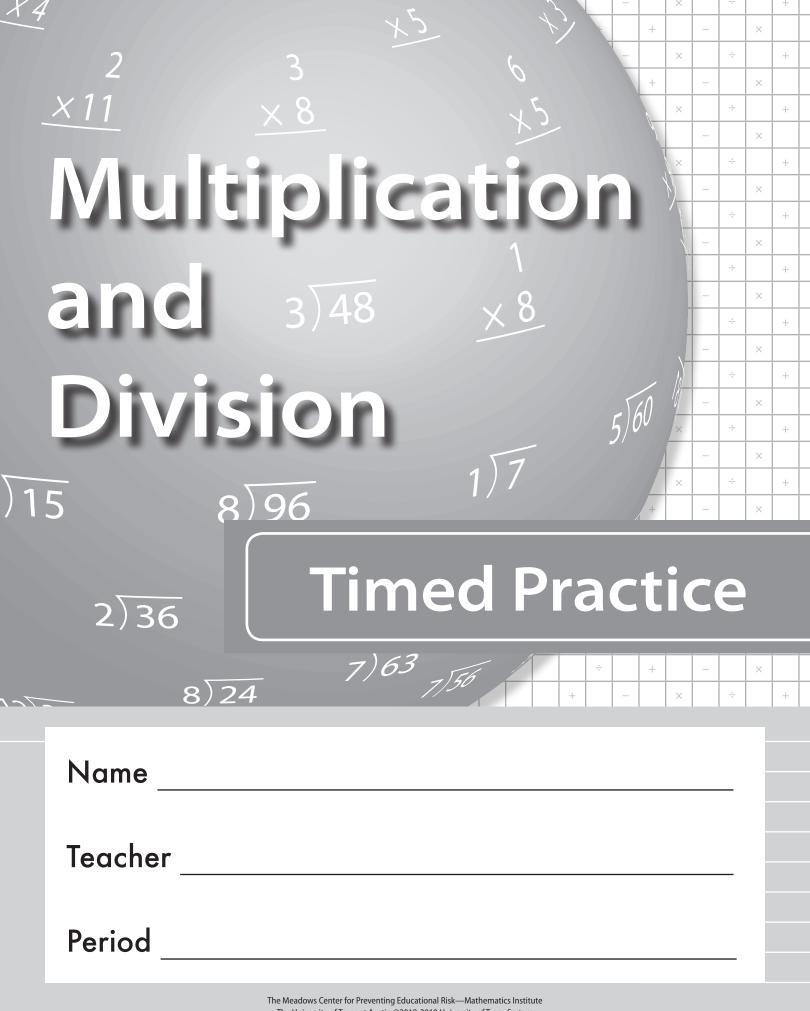
- **3.** Find the quotient of $17.25 \div 2.5$
 - **a.** 6.9
 - **b.** 8.5
 - **c.** 8.9
 - **d.** 8.05

- **4.** Emma divided $32.16 \div 0.8$. Her quotient was 4.02. Is her quotient reasonable?
 - **a.** Yes, because 32.85 is close to 30 and 0.8 is close to $10.30 \div 10 = 3$
 - **b.** Yes, the quotient should be less than the dividend because 0.8 is less than 1.
 - **c.** No, because 32.85 is close to 300 and 0.8 is close to 10. $300 \div 10 = 30$
 - **d.** No, because 32.85 is close to 30 and 0.8 is close to 1. $30 \div 1 = 30$

- **1.** The diameter of the kapok tree, which is the largest tree in the Amazon, is approximately 27.34 feet. What is the radius of this tree? (Remember that a radius is half of the diameter.)
 - **a.** 27.34 feet
 - **b.** 30.34 feet
 - **c.** 27 feet
 - **d.** 13.67 feet

- **2.** Martin's family spends \$2,371.56 per year on cable service. About how much does Martin's family spend per month on cable service?
 - a. About \$180 per month
 - **b.** About \$190 per month
 - c. About \$200 per month
 - **d.** About \$210 per month

- **3.** Tiffany went to the discount store, where everything sells for \$5.82 each. If she spent \$69.84, how many items did she buy?
 - **a.** 12 items
 - **b.** 13 items
 - **c.** 11 items
 - **d.** 14 items


- **4.** William's mom bought ribbon to make the cheerleaders' bows. She paid \$0.48 per foot for the ribbon. She spent \$10.08. How many feet of ribbon did she buy?
 - **a.** 210 feet
 - **b.** 0.21 feet
 - **c.** 2.1 feet
 - **d.** 21 feet

- **1.** Jim had 12 reels of kite string. Each reel had 3.75 yards of string. What is the total number of yards of kite string that Jim had?
 - **a.** 15.75 yards
 - **b.** 8.25 yards
 - **c.** 3.2 yards
 - **d.** 45 yards

- **2.** Chad bought 3.25 pounds of apples for \$1.69 per pound. How much did he pay for the apples?
 - **a.** \$5.49
 - **b.** \$54.92
 - **c.** \$0.55
 - **d.** \$5.92

- **3.** Three friends and Matt went to lunch. Their lunch total was \$25.36. They shared the bill evenly. How much did each person pay?
 - **a.** \$63.40
 - **b.** \$6.34
 - **c.** \$8.45
 - **d.** \$84.53

- **4.** Sharon had 5.5 gallons of ice cream for the party. She served 3.75 gallons. How much ice cream does she have left?
 - **a.** 2.25 gallons
 - **b.** 3.25 gallons
 - **c.** 1.75 gallons
 - **d.** 9.25 gallons

Multiplication Timed Practice Sheet 1

Number Correct:

1 8 × 2

2 1 × 7 5 × 8 4 6 × 3

5 7 × 4 6 6 × 6 7 2 × 12 8 4 × 5

9 7 × 6 10 3 × 9

11 × 5

12 3 × 3

13 8 × 9 14 2 × 4 15 6 × 9 16 4 × 12

17 9 × 6 18 × 10 × 8

19 2 × 9 20 8 × 3

Multiplication Timed Practice Sheet 2

Number Correct: _____

1 7 × 2

2 5 × 5 3 9 × 1 4 7 × 11

5 × 6

6 10 × 3 7 × 5

8 3 × 4

9 4 × 9 10 4 × 7

11 12 × 6

12 7 × 8

13 7 × 10

14 8 × 6 15 6 × 7 16 5 × 3

17 9 × 8 18 6 × 4

19 9 × 4

20 8 × 4

Multiplication Timed Practice Sheet 3

Number Correct:

1 1 × 12

2 4 × 3 3 5 × 2 4 10 × 7

5 10 × 2 6 4 × 8 7 3 × 7

8 12 × 7

9 11 × 6

10 3 × 12

11 4 × 6 12 5 × 9

13 8 × 7 14 7 × 3 15 8 × 8 16 5 × 10

17 5 × 4

18 9 × 2

19 3 × 11

20 9 × 7

Multiplication Timed Practice Sheet 4

Number Correct:

1 2 × 8

2 3 × 6 3 8 × 5 4 2 × 7

5 11 × 9 6 4 × 4 7 9 × 4

8 3 × 10

9 5 × 9 10 5 × 12 11 7 × 3

12 1 × 5

13 3 × 2 14 6 × 8 15 9 × 11 16 4 × 5

17 12 × 5

18 4 × 2

19 7 × 7 **20** × 10

Multiplication Timed Practice Sheet 5

Number Correct:

1 4 × 6

2 9 × 3 3 5 × 11 4 10 × 5

5 × 7

6 2 × 10 7 3 × 1 **8** 12 × 5

9 8 × 6 **10** 6 × 12

11 6 × 2

12 7 × 7

13 4 × 7 14 5 × 3

15 3 × 8 16 12 × 2

17 9 × 3 18 11 × 4

7 × 4 20 9 × 10

Multiplication Timed Practice Sheet 6

Number Correct:

1 4 × 3

2 3 × 6 3 7 × 5 4 6 × 4

5 8 × 10 6 2 × 2 7 11 × 2 8 5 × 5

9 3 × 5 10 4 × 8 11 7 × 9 12 8 × 12

13 2 × 10 14 1 × 8 15 6 × 11 16 × 12

17 12 × 8 18 × 10 × 6

19 2 × 5 20 9 × 7

Multiplication Timed Practice Sheet 7

Number Correct:

1 5 × 8

2 4 × 4 5 × 7 4 9 × 2

5 8 × 11 6 3 × 7 7 2 × 6 8 3 × 5

9 3 × 4

10 9 × 12 11 6 × 10 12 8 × 3

13 12 × 11

14 8 × 8 15 5 × 4

16 1 × 11

17 6 × 7

18 7 × 6

19 10 × 9 20 6 × 5

Multiplication Timed Practice Sheet 8

Number Correct: ____

Multiplication Timed Practice Sheet 9

Number Correct:

1 6 × 2 2 9 × 5 3 11 × 8 4 2 × 6

5 × 6

6 8 × 9 7 9 × 8 8 10 × 4

9 12 × 3 10 11 × 11

11 4 × 10 12 7 × 8

13 3 × 9 14 4 × 9

15 8 × 2

16 12 × 9

17 11 × 3

18 × 10 × 7

19 1 × 6

20 2 × 8

Multiplication Timed Practice Sheet 10

Number Correct: _____

1 3 × 8

2 6 × 3 3 × 3

4 10 × 1

5 2 × 5 6 2 × 11 7 9 × 9 8 9 × 5

9 2 × 9 10 6 × 6

11 2 × 3

12 × 3

13 2 × 7 14 12 × 10 15 8 × 4 16 × 8

17 11 × 4

18 5 × 5

19 10 × 11

20 7 × 2

Division Timed Practice Sheet 1

Number Correct: _____

7)21

5)10

2)14

9) 27

6) 24

10)70

8)32

6)36

9 3 9

5) 35

11 1 8

12) 24

2) 20

8)40

3) 15

4)32

4) 28

7)42

9)63

6)66

Division Timed Practice Sheet 2

Number Correct: _____

1 2)10

3)27

3 3 21

4 7)14

5 6)30

6 1 6

7 6)54

8 12)60

9 3 36

10 4)24

11 5) 25

10)80

13 8) 16

14 11)44

15 8) 24

16 5)30

17 9)54

18 6)60

19 8) 72

20 7) 56

Division Timed Practice Sheet 3

Number Correct: _____

11)66

2 2 18

6)42

7)63

5)45

3)24

9)36

1) 12

9 4)20

10 10)30

9)36

9)90

8)80

3) 18

8) 24

4) 16

7)35

6) 18

9) 99

12)120

Division Timed Practice Sheet 4

Number Correct: _____

5) 15

11)55

4) 12

9)45

7)28

4)36

1) 7

10)60

2)16

5)40

8) 56

2) 24

9) 18

11)88

12)48

7)49

7) 56

3 6

4)40

6)30

Division Timed Practice Sheet 5

Number Correct: _____

3)21

6) 12

3 3 36

3) 15

9)36

6 8)48

3)12

10)90

9 4)24

5)60

11)33

8) 64

13 1)4

4) 28

6) 48

5) 55

12) 24

7) 70

9) 27

12) 96

Division Timed Practice Sheet 6

Number Correct: _____

1 2)20

8) 16

5)20

1) 3

5)35

6 4)44

6)48

8 11)110

3)18

10 2 4

3) 27

6) 72

9)81

3) 24

10) 20

4) 48

6)30

10)110

9)54

7) 28

Division Timed Practice Sheet 7

Number Correct: _____

1 2)10

8)40

3 3 9

4 11)55

5 8) 56

6 8)32

7 7 63

8 2)22

9 4)36

10 10 80

11 8)64

12 12) 72

13 5) 15

14 9)63

15 7) 77

16 6) 18

17 5)50

18 6)36

19 6) 24

20 1) 9

Division Timed Practice Sheet 8

Number Correct: _____

9)45

11)66

3 2 4

2)12

1) 5

12)108

5) 55

7)49

5)60

10 4 8

4)32

10)40

7)84

7) 21

12)144

6) 54

9)81

11) 99

4)40

5)50

Division Timed Practice Sheet 9

Number Correct: _____

11)22

4)12

6)66

5)30

4) 16

6 2 6

5)45

10)120

9 10)40

10 8)88

8)72

12)36

2) 14

11)121

7) 35

1) 10

4) 48

9)72

12)84

3)33

Division Timed Practice Sheet 10

Number Correct: _____

10)70

6) 12

3 2 8

3)12

5) 25

6 6)42

5)20

3)30

2) 18

10)100

4) 12

8) 48

7)42

12)36

4)48

11)77

9)72

1) 11

3 33

5) 10

Mixed Facts Timed Practice Sheet 1

Number Correct:

1 4 × 7 2 2 16

3 4 × 5 **4** 7)21

5 11 × 1 **6** 7) 56

7 8 × 8 8 3 × 4

9 4)36

10 3) 18

11 8 64

12 3 × 12

13 9)45

14 7)70

15 7 × 6

16 × 6

17 8 × 2 18 9 × 6 **19** 5) 20

20 5) 55

Mixed Facts Timed Practice Sheet 2

Number Correct:

1 2 × 9

2 5 × 10 **3** 2)12

4 5 × 7

5 6)42

6 11 × 4 7 7 × 8

8 8 32

9 6)54

10 3)33

11 5 × 12

12 1) 12

13 12 × 2 **14** 4) 16

15 6 × 9 16 3 × 6

17 12)24

18 3 × 8 10)20

20 4) 8

Mixed Facts Timed Practice Sheet 3

Number Correct:

1 8 × 5 3)12

3 4 × 8 **4** 8) 56

5 7 × 7 **6** 10)60

7 4 8

8 6 × 1

9 10)100

10 9 × 2 11 9 99

12 3 × 5

13 10 × 11

14 5 × 2

15 3) 27

16 × 4

17 8)40

18 7 × 9 **19** 5) 35

20 12)36

Mixed Facts Timed Practice Sheet 4

Number Correct: _____

1 4 × 6 5)40

3 2 × 11 **4** 3)21

5 1 7

6 12 × 6 **7** 4) 12

8 2 × 10

9 6 × 8 **10** 5)50

11 3 × 3

12 9)72

13 8 × 10

14 7 × 4 **15** 11) 99

16 5 × 9

17 12 60

18 6) 36

19 3 × 5 **20** 7) 28

Mixed Facts Timed Practice Sheet 5

Number Correct:

Mixed Facts Timed Practice Sheet 6

Number Correct:

1 3 × 9 5)30

3 4) 28

4 10 × 8

5 8 × 7 6 7 × 3 **7** 2)20

8 5) 25

9 6)24

10 2 × 12 11 11 × 2

12 12)48

13 1)11

14 11)44

15 9 × 9

16 5 × 3

17 5) 15

18 9 × 4 **19** 6) 48

20 3 × 10

Mixed Facts Timed Practice Sheet 7

Number Correct:

1 5 × 4

2 4)32

3 8 × 3 7)14

5 3)30

6 7)42

7 6)30

8 6 × 7

9 6 × 4

10 4)40

11 7 × 1 12 5 × 8

13 9)81

14 10 × 12 **15** 9 63

16 4 × 9

17 6 × 2

18 11 × 3

19 11)22

20 10)70

Mixed Facts Timed Practice Sheet 8

Number Correct: _____

Mixed Facts Timed Practice Sheet 9

Number Correct:

1 4 × 4 9)18

3 9 × 5 **4** 3) 12

5 9)27

6 11 × 11 **7** 5)60

8 6) 12

9 6 6 60

10 5 × 6

11 12 × 8 12 8 × 1

13 7)49

14 6 × 2 15 11 × 10

16 7) 77

17 7 × 10


18 11)121

19 8) 16

20 4 × 12

Mixed Facts Timed Practice Sheet 10

Number Correct: _____

